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Abstract — In this paper we consider a three-
dimensional electromagnetic field in a homogeneous
and time-variant medium. After a spatial Fourier
transformation we solve Maxwell’s equations for the
electric and magnetic flux densities and write the
solution in terms of the so-called transition matrix.
This matrix can be given in terms of the well known
Peano-Baker series and we show that in the constant
impedance case this series simplifies to the matrix
exponential operator. This operator can explicitly
be transformed back to the spatial domain result-
ing in explicit space-time domain expression for the
electromagnetic field.

1 INTRODUCTION

Interactions of the electromagnetic field with a
time-varying medium are exploited in many dif-
ferent application areas such as imaging, radar,
telecommunications, and optical communication
technology ([1] – [4]). In this paper we study this
interaction for a three-dimensional electromagnetic
field that is present in a homogeneous and time-
variant medium. The field is generated by external
electric- and magnetic-current sources that occupy
a bounded domain Dsrc in R3. These sources are
switched on at the time instant t = t0 and it is
our objective to find the electric and magnetic field
strengths in all of space for t > t0.

Our approach is to solve Maxwell’s equations
for the flux densities instead of the field strengths.
Specifically, we first use the constitutive relations
to rewrite Maxwell’s equations in terms of the
electric and magnetic fluxes. We then apply a
three-dimensional spatial Fourier transform to ar-
rive at the Fourier domain state-space representa-
tion of Maxwell’s equations. From this representa-
tion we obtain the transformed electric and mag-
netic flux densities in terms of the so-called Peano-
Baker series. The problem with this series is that
it is far from trivial to analytically evaluate its in-
verse spatial Fourier transform. If, however, the
transformed Maxwell operator commutes with its
time-integrated form, then the Peano-Baker series
simplifies to the exponent of the time-integrated

∗Circuits and Systems Group, Faculty of Electrical En-
gineering, Mathematics and Computer Science, Delft Uni-
versity of Technology, 2628 CD Delft, The Netherlands, e-
mail:r.f.remis@tudelft.nl, tel.: +31 15 2781442.

Maxwell operator and we will show that under this
condition it is possible to analytically carry out the
inverse Fourier transform. Furthermore, we will
also show that the commutation relation holds if
and only if the time variations of our medium are
such that its impedance is constant. Having found
the electric and magnetic flux densities in space-
time, it is now an easy matter to obtain the field
strengths by simply using the constitutive relations
one more time.

2 GENERAL k-SPACE SOLUTION

We consider an electromagnetic field in a homoge-
neous and time-variant medium characterized by
the time-dependent permittivity ε(t) and perme-
ability µ(t). The electromagnetic field is gen-
erated by external electric- and magnetic-current
sources Jext

k and Kext
j that occupy the bounded

domain Dsrc in R3. The sources start to act at
the time instant t = t0 and we are interested in the
electromagnetic field in all of space and for t ≥ t0.
This field satisfies Maxwell’s equations

−εk,m,p∂mHp + ∂tDk = −Jext
k (1)

and

εj,m,r∂mEr + ∂tBj = −Kext
j (2)

and the constitutive relations relating the fluxes to
the fields are given by

Dk = ε(t)Ek and Bj = µ(t)Hj . (3)

Our approach is to first solve Maxwell’s equations
for the fluxes Dk and Bj and then to use the above
constitutive relations to obtain the corresponding
electric and magnetic field strength components.
Explicitly, we write Maxwell’s equations as

−µ(t)−1εk,m,p∂mBp + ∂tDk = −Jext
k (4)

and

ε(t)−1εj,m,r∂mDr + ∂tBj = −Kext
j , (5)

978-1-61284-978-2/11/$26.00 ©2011 IEEE

263



and try to solve these equations forDk andBj using
the prescribed initial fluxes

Dk = D0
k and Bj = B0

j (6)

which hold for all x ∈ R3 and at t = t0.
To this end, we first apply a Fourier transforma-

tion to Maxwell’s equations with respect to the spa-
tial coordinates. The Fourier transformation pair of
a function f(x, t) is given by

f̃(k, t) = F{f(x, t)}

=

∫
x∈R3

exp(jk · x)f(x, t) dV
(7)

and

f(x, t) = F−1{f̃(k, t)}

=
1

(2π)3

∫
k∈R3

exp(−jk · x)f̃(k, t) dV,
(8)

and using the rule that ∂̃m = −jkm, we arrive at

∂tD̃k = µ(t)−1εk,m,p(−jkm)B̃p − J̃ext
k (9)

and

∂tB̃j = −ε(t)−1εj,m,r(−jkm)D̃r − K̃ext
j . (10)

We now write these two equations in state-space
form. Introducing the k-space flux and source vec-
tors as

f̃ =

(
d̃

b̃

)
and q̃ =

(
j̃ext

k̃ext

)
, (11)

respectively, where

d̃ =

D̃1

D̃2

D̃3

 , b̃ =

B̃1

B̃2

B̃3

 , (12)

j̃ext =

J̃ext
1

J̃ext
2

J̃ext
3

 and k̃ext =

K̃ext
1

K̃ext
2

K̃ext
3

 , (13)

we can write

∂tf̃ = Ã(t)f̃ − q̃, (14)

where Ã(t) is the k-space system matrix given by

Ã(t) =

(
0 µ(t)−1K̃

−ε(t)−1K̃ 0

)
(15)

and

K̃ =

 0 jk3 −jk2
−jk3 0 jk1
jk2 −jk1 0

 (16)

is the Fourier transformed curl operator. From lin-
ear system theory we know that the general k-space
solution of Eq. (14) is given by (see, for example,
[5])

f̃(t) = Φ̃(t, t0)f̃0 −
∫ t

τ=t0

Φ̃(t, τ)q̃(τ) dτ for t ≥ t0,

(17)
where f̃0 contains the Fourier-transformed initial
fluxes and Φ̃ is the transition matrix given by the
Peano-Baker series

Φ̃(t, τ) = I +

∫ t

σ1=τ

Ã(σ1) dσ1

+

∫ t

σ1=τ

Ã(σ1)

∫ σ1

σ2=τ

Ã(σ2) dσ2 dσ1 + ... .

(18)

Obtaining an explicit (space-time) expression for
the transition matrix is difficult and perhaps even
impossible in general. In the next section, however,
we show that the above expression for the transition
matrix simplifies significantly if the impedance is
constant in time.

3 EXPLICIT SPACE-TIME SOLUTION
FOR MEDIA WITH A CONSTANT
IMPEDANCE

Suppose that the time variation of the permittiv-
ity and permeability is such that the system matrix
commutes with its time-integrated form. More pre-
cisely, suppose that for every value of τ and t we
have

Ã(t)

∫ t

σ=τ

Ã(σ) dσ =

∫ t

σ=τ

Ã(σ) dσA(t). (19)

It is well known that if this commutation relation
holds the expression for the transition matrix re-
duces to (see [5])

Φ̃(t, τ) = exp

[∫ t

σ=τ

Ã(σ) dσ

]
. (20)

This form allows us to obtain explicit expressions
for the electromagnetic field quantities in space-
time. Before doing so, however, we first want to
determine under what condition(s) on ε and µ the
commutation relation of Eq. (19) holds. Writing
out the left- and right-hand side of this equation
and comparing entries, we find that the commuta-
tion relation is satisfied if and only if

Z(t)2
∫ t

σ=τ

1

µ(σ)
dσ =

∫ t

σ=τ

Z(σ)2
1

µ(σ)
dσ, (21)
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for every value of τ and t, where Z = [µ(t)/ε(t)]1/2

is the wave impedance. Since this equation is sat-
isfied for a constant impedance only, we conclude
that the simplified form for the transition matrix
as given by Eq. (20) holds if and only if the time
variations of the permittivity and permeability are
such that the impedance is constant.

From this moment on, we restrict ourselves to
this constant impedance case and write the system
matrix as

Ã = c(t)B̃, (22)

where c = [ε(t)µ(t)]−1/2 is the electromagnetic
wave speed and

B̃ =

(
0 Z−1K̃

−ZK̃ 0

)
(23)

is time independent. In terms of this matrix, the
transition matrix is given by

Φ̃(t, τ) = exp
[
ζ(t, τ)B̃

]
, (24)

where

ζ(t, τ) =

∫ t

σ=τ

c(σ) dσ. (25)

We now rewrite the expression for the transition
matrix in a form that allows for a direct transfor-
mation back to the space-time domain. First, we
use the power series expansion of the exponential
function and split the summation into even and odd
powers of matrix B̃. This gives

Φ̃(t, τ) = I +
∞∑
n=1

ζ2n

(2n)!
B̃2n +

∞∑
n=0

ζ2n+1

(2n+ 1)!
B̃2n+1.

(26)
Now since

B̃2n = (−1)n|k|2n
(

G̃ 0

0 G̃

)
for n = 1, 2, ...,

(27)

where G̃ = I− |k|−2kkT , and

B̃2n+1 = (−1)n|k|2nB̃ for n = 0, 1, ..., (28)

we can write Eq. (26) as

Φ̃(t, τ) = I−
(

G̃ 0

0 G̃

)
+
∞∑
n=0

(−1)n
(ζ|k|)2n

(2n)!

(
G̃ 0

0 G̃

)

+
∞∑
n=0

(−1)n
(ζ|k|)2n+1

(2n+ 1)!
|k|−1B̃.

(29)

In the above expressions we recognize the power
series expansions of cos(ζ|k|) and sin(ζ|k|) and the
above expression for Φ̃ becomes

Φ̃(t, τ) = I−
(

G̃ 0

0 G̃

)
+ cos(ζ|k|)

(
G̃ 0

0 G̃

)
+

sin(ζ|k|)
|k|

B̃.

(30)

Finally, since

I−
(

G̃ 0

0 G̃

)
+ cos(ζ|k|)

(
G̃ 0

0 G̃

)
= cos(ζ|k|)I +

[1− cos(ζ|k|)]
|k|2

(
kkT 0
0 kkT

)
(31)

we arrive at

Φ̃(t, τ) = cos(ζ|k|)I

+
[1− cos(ζ|k|)]

|k|2

(
kkT 0
0 kkT

)
+

sin(ζ|k|)
|k|

(
0 −Z−1K̃
ZK̃ 0

)
,

(32)

where we have used the definition of matrix B̃ as
well.

Having found an explicit k-space expression for
the transition matrix, we now substitute this ex-
pression in Eq. (17) to obtain the k-space flux den-
sities. Taking f̃0 = 0 for simplicity, we obtain

d̃(k, t) =

−
∫ t

τ=t0

[
cos(ζ|k|)̃jext +

[1− cos(ζ|k|)]
|k|2

kkT j̃ext

− Z−1
sin(ζ|k|)
|k|

K̃k̃ext

]
dτ

(33)

and

b̃(k, t) =

−
∫ t

τ=t0

[
cos(ζ|k|)k̃ext +

[1− cos(ζ|k|)]
|k|2

kkT k̃ext

+ Z
sin(ζ|k|)
|k|

K̃j̃ext
]

dτ,

(34)

for t ≥ t0. To obtain the space-time representa-
tions for the fluxes, we need to evaluate the inverse
Fourier transform of the above k-space equations.
To this end, we make use of the results

F−1 {cos(ζ|k|)} =

1

4π|x|

[
δ(1)(ζ − |x|)− δ(1)(ζ + |x|)

]
,

(35)
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F−1
{

sin(ζ|k|)
|k|

}
=

1

4π|x|
[δ(ζ − |x|)− δ(ζ + |x|)] ,

(36)

and

∂tF−1
{

[1− cos(ζ|k|)]
|k|2

}
=

c(t)

4π|x|
[δ(ζ − |x|)− δ(ζ + |x|)] .

(37)

In the above expressions the second delta function
between the square brackets vanishes, since ζ > 0
for t > t0.

Carrying out the inverse Fourier transform, we
arrive at the space-time flux densities

d(x, t) = − 1

c(t)
∂ta(x, t, t0)

+ ∇∇ ·
∫ t

σ=t0

c(σ)a(x, σ, t0) dσ

− Z−1∇×m(x, t, t0)

(38)

and

b(x, t) = − 1

c(t)
∂tm(x, t, t0)

+ ∇∇ ·
∫ t

σ=t0

c(σ)m(x, σ, t0) dσ

+ Z∇× a(x, t, t0),

(39)

for t ≥ t0 and x ∈ R3 and where the electric and
magnetic vector potentials are given by

a(x, t, t0) =∫
x′∈Dsrc

∫ t

τ=t0

δ [ζ(t, τ)− |x− x′|]
4π|x− x′|

jext(x′, τ) dτ dV

(40)

and

m(x, t, t0) =∫
x′∈Dsrc

∫ t

τ=t0

δ [ζ(t, τ)− |x− x′|]
4π|x− x′|

kext(x′, τ) dτ dV,

(41)

respectively. Finally, the electric and magnetic field
strengths are obtained by using the constitutive re-
lations one more time.
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