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1. Introduction

The Finite-Difference Time-Domain method (FDTD method) is a well known and popular solution method for Maxwell’s
equations. It can be considered as one of the workhorses of computational electromagnetics and it is used to solve a wide
range of electromagnetic wave field problems in many different areas of physics and engineering (see, for example
[1-4]). A partial history of FDTD techniques can be found in [3]. The method is based on the first-order Maxwell system
and solves for both the electric and magnetic field strength. In its most basic form, the spatial coordinates are discretized
on a staggered nonuniform tensor-product grid (Yee-grid) and the time coordinate is discretized using a leap-frog time dis-
cretization scheme. The resulting FDTD method is explicit and conditionally stable, that is, FDTD is stable if and only if the
time step satisfies the Courant-Friedrichs-Lewy (CFL) stability condition.

In this paper we show that FDTD field approximations are Fibonacci polynomials in AtA, where At is the time step and A
is the first-order Maxwell system matrix. Furthermore, by exploiting the connection between Fibonacci polynomials and
Chebyshev polynomials of the second kind, we can easily derive the CFL upper bound for FDTD. We also show that FDTD
essentially does not adapt itself to the spectrum of the system matrix. We can only adapt FDTD to the spectral width of
the system matrix through a proper choice of the time step At. Specifically, we show that FDTD is matched to the spectral
width of the system matrix if we take the time step as large as possible. This result also follows from a standard numerical
dispersion analysis of FDTD. Dispersion is minimized by iterating with a time step as close to the CFL limit as possible [4].

This paper is organized as follows. In Section 2 we briefly review the finite-difference state-space representation of the
full 3D Maxwell system and discuss some of its properties. The standard FDTD update equations for three-dimensional prob-
lems are reviewed as well. In Section 3 we show the connection between Fibonacci polynomials and FDTD and show how the
CFL stability bound is obtained by exploiting the connection between Fibonacci polynomials and Chebyshev polynomials of
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the second kind. Furthermore, we also show how we can match FDTD to the spectral width of the system matrix. Finally, the
conclusions can be found in Section 4.

2. The finite-difference state-space representation

After discretizing Maxwell’s equations in space on a staggered possibly nonuniform Yee-grid ([3,4]), we obtain the so-
called finite-difference state-space representation [5]

(D + Mo)f = —w(t)q. (1)

In this equation, f = [e”,h"]" is the field vector and e and h contain all time-dependent finite-difference approximations of the
electric and magnetic field strength, respectively. The total number of field approximations (unknowns) is denoted by n. Fur-
thermore, the source vector is given by q = [(j%)7,(k*%)"]", where j*** and k®* are the time-independent external finite-dif-
ference electric and magnetic current density vectors, and the scalar time-dependent function w(t) is called the source
wavelet or source signature.

The discretized rotation operators are contained in the spatial differentiation matrix

0 D
D= < " )
D. 0
In this equation, Dy, is the discretized rotation operator (including a minus sign) acting on the magnetic field strength, while

D. is the discretized rotation operator acting on the electric field strength. Matrix D is skew-symmetric with respect to a
diagonal and positive definite step size matrix W (see [5,6]). Specifically, we have

D'W = —~WD.
The medium matrix M is given by
w4 )
0o M)’
and M, and M,, are diagonal and positive definite medium matrices with (averaged) permittivity and permeability values on
the diagonal.

We write Eq. (1) in a more convenient form by premultiplying this equation by the inverse of the medium matrix. We
obtain

of = Af — w(b)s, (2)

where s = M~ !q and where we have introduced the system matrix as A = —M~'D. The minus sign in the latter definition is for
convenience only. The continuous-time solution of Eq. (2) is essentially given by the temporal convolution of the source
wavelet w(t) and the vector exp (At)s.

The system matrix A is skew-symmetric with respect to the diagonal and positive definite energy matrix W" = WM. More
precisely, we have

ATWS = —WA
and consequently we know that there exists a matrix V such that

AV=VA with VIWV =1,
and A =diag(/1,42,...,4,) (see, for example [7]). Furthermore, all eigenvalues /; are pure imaginary and therefore we can also
write A =iX, where i is the imaginary unit, and > = diag(o4,03,...,0,) with g; e R, j=1,2,...,n.

2.1. The FDTD update equations

From this moment on, we consider external electric-current type sources only (k= 0), since the analysis for external
magnetic-type sources runs along similar lines.

Introduce the time instances t, = nAt, where At > 0 is the time step and n a nonnegative integer. The FDTD update equa-
tions are given by (see [3,4,8])

h(t,.12) = h(t,_12) — AtM,'Dee(t,)
and
e(tyi1) = €(ty) — AtM, 'Dph(tn;12) — L{w}M, 1§

forn=0,1,2,..., with h(t_1,3) =0, e(ty) =0, and
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L{w} = / ;] w(t)dt.

For simplicity, we take w(t) = ad(t), where 4(t) is the Dirac delta function and a is a constant amplitude factor. The electro-
magnetic response to the desired source signature w (or any other signature for which the chosen spatial grid is suitable) can
then be found by convolving w(t) with the computed FDTD response. This approach is not necessary in what follows, but it
simplifies the resulting formulas in the sense that now we do not have to drag along the source vector in the complete updat-
ing procedure. More precisely, with w(t) = ad(t), we have

lp{as(t)} =a and I,{as(t)} =0 for n>1
and the update equations simplify to

h(t,.12) = h(ty 1) — AtM, ' Dee(t,) (3)
and

e(tn:1) = €(ty) — AtM, ' Dyh(tn11)2) (4)
for n > 1 with

h(t;2) =0 and e(t;) = *aM;]jEXt.

3. Fibonacci polynomials and FDTD

To show the connection between FDTD and the Fibonacci polynomials, we first write the FDTD update Eqs. (3) and (4) in a
more compact form. Introduce the FDTD field vectors

0

g”_(h(tm)> for n=0,2,4,...
gn=<e(t%)) for n=1,3,5,...

0

The update equations can now be written as

and

8n1 = AtAg, + 8, for n=1,2,..., (3)

where A is the system matrix introduced in Section 2. Now the Fibonacci polynomials are defined by the recurrence formula
(see, for example [9])

Fri1(X) =xFy(x) + Fpq(x) for n=1,2,... (6)
with Fg(x) = 0 and F;(x) = 1. The first few Fibonacci polynomials are
Fo(x)=x, Fs(x)=x*+1, Fs(x)=x>+2x, Fs(x)=x*+3x*+1

and in general we have

() (o

Fo(x) =

)

X2+ 4

forn=0,1,... Notice that the degree of F,,(x) is n — 1 and the Fibonacci polynomials are normalized such that F,,(1) = f,, where
the f, are the Fibonacci numbers. Finally, Fibonacci polynomials are related to Chebyshev polynomials of the second kind via
the formula

Fn+1 (ZIX) = inUn(X)v (7)
forn=0,1,...
Comparing Eq. (5) with Eq. (6), we observe that
g, =F.(AtA)g, for n=1,2,...

In other words, the FDTD field vectors are Fibonacci polynomials in AtA acting on the starting (source) vector g;. Having
established this connection, it is now straightforward to show under what condition the FDTD method is stable. Specifically,
using the spectral decomposition of the system matrix, we can write for the nth FDTD vector
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g, = VF,(AtA)V'W™g, = VF, (21 % 2) Viweg, =i 'vU, 4 (% z) viweg, |

where we have used Eq. (7). Since U,(x) is bounded on (—1,1) for all n > 0 and since U,(x) becomes unbounded as n increases
for any x not belonging to (—1,1), we conclude from the above result that FDTD is stable if and only if

2
A< @y
where p(A) is the spectral radius of matrix A. This is the famous Courant-Friedrichs-Lewy (CFL) stability condition (see
[5,8,10]). Explicit expressions for the spectral radius can only be given in special cases. For example, if uniform grids are ap-
plied to problems involving homogeneous media, then p(A) can be determined explicitly (see, for example [6]). For general
inhomogeneous media and grids with variable step sizes, we can either estimate the spectral radius by exploiting the specific
structure of the system matrix (see [11]), or we can compute it numerically using an iterative eigensolver. For details, we
refer to [11].

The connection between FDTD and Fibonacci polynomials can also be used to show how FDTD approximates the spec-
trum of the system matrix. To be specific, suppose that we have carried out k FDTD iterations using a time step At. We then
have generated 2k FDTD vectors and we can summarize all these FDTD iterations into a single equation. In particular, setting
m =2k and G, = (81,82, - .,&n), we have the summarizing equation

1
AG = G Ty + gn. el 8)

where e, is the mth column of the m-by-m identity matrix, and T,, is a tridiagonal and skew-symmetric matrix of order m
given by

The eigenproblem for matrix T,, can be solved explicitly. In particular, the eigenvalues of matrix T,, are given by

gk:Zi% for k=1,2,....m, 9)

where

Z = COoS <k7n> for k=1,2,...,m
m+1

are the roots of the Chebyshev polynomial U, (the roots of the Fibonacci polynomial F,.; are 2iz, cf. Eq. (7)). We observe

that the only way to adapt FDTD to the spectrum of the system matrix is through the time step At. By selecting the time step

as large as possible, that is, as close to the CFL upper bound as possible, the FDTD eigenvalues are essentially distributed over

the spectral interval ip(A)(—1,1) of the system matrix. More precisely, with

At =(1-¢) and €>0,

2
pA)’
the FDTD eigenvalues are given by

Ge=1pA)ze[1+0(1)] ase|O0.

To put it differently, by selecting the time step as large as possible, we take care of the extremal eigenvalues only. There is no
other spectral adaptation in FDTD. This is to be contrasted with approximation methods based on the Lanczos algorithm for
skew-symmetric matrices such as the Spectral Lanczos Decomposition Method (SLDM, see, for example [12,13]). The Lanczos
algorithm also computes a decomposition of a form as given by Eq. (8), but the tridiagonal Lanczos matrix automatically
adapts itself to the spectrum of the system matrix as can be seen from the coefficients located along its upper and lower
diagonal. In general, these coefficients are not constant (as in FDTD) and change at every iteration. Loosely speaking, the
reciprocals of the Lanczos recurrence coefficients act as time steps in a Lanczos method and are generated automatically.
There is no explicit time step selection that fixes all eigenvalues as in FDTD.

4. Conclusions

In this paper, we have shown that FDTD field approximations are Fibonacci polynomials in AtA, where At is the time step
and A the first-order Maxwell system matrix. We have also shown that the CFL stability condition is easily obtained by
exploiting the connection between Fibonacci polynomials and Chebyshev polynomials of the second kind. Furthermore,
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we have shown that there is no automatic spectral adaptation in FDTD. We can only match FDTD to the spectral width of the
system matrix by selecting the time step as close to the CFL upper bound as possible. Finally, we like to point out that it may
be possible to apply (a modification of) the present analysis to other FDTD like schemes such as the ones presented in
[14,15].

Acknowledgment
The author thanks the reviewers for providing him with a number of important references.

References

[1] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag. 14
(1966) 302-307.
[2] A. Taflove, Application of the Finite-Difference Time-Domain method to sinusoidal steady-state electromagnetic penetration problems, IEEE Trans.
Electromagn. Compat. 22 (1982) 191-202.
[3] A. Taflove, S.C. Hagness, Computational Electrodynamics. The Finite-Difference Time-Domain Method, third ed., Artech House, Boston, 2005.
[4] D.B. Davidson, Computational Electromagnetics for RF and Microwave Engineering, Cambridge University Press, Cambridge, 2005.
[5] B. Denecker, L. Knockaert, F. Olyslager, D. De Zutter, A new state-space-based algorithm to assess the stability of the Finite-Difference Time-Domain
method for 3D finite inhomogeneous problems, AEU-Int. J. Electron. Commun. 58 (2004) 339-348.
[6] RF. Remis, Global form of the 2d finite-difference Maxwell system and its symmetry properties, in: Proceedings of 2002 IEEE Antennas and
Propagation Symposium, San Antonio, Texas, 2002, pp. 624-627.
[7] C.D. Meyer, Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics, Philadelphia, 2000.
[8] R.F. Remis, On the stability of the Finite-Difference Time-Domain method, . Comput. Phys. 163 (2000) 249-261.
[9] T. Koshy, Fibonacci and Lucas Numbers With Applications, Wiley-Interscience, New York, 2001.
[10] A.Taflove, M.E. Brodwin, Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations, IEEE
Trans. Microwave Theory Tech. 23 (1975) 623-630.
[11] R.F. Remis, Stability of FDTD on nonuniform grids for Maxwell’s equations in lossless media, J. Comput. Phys. 218 (2006) 594-606.
[12] V.L. Druskin, L.A. Knizhnerman, Two polynomial methods for calculating functions of symmetric matrices, U.S.S.R. Comput. Math. Math. Phys. 29
(1989) 112-121.
[13] R.F. Remis, P.M. van den Berg, A modified Lanczos algorithm for the computation of transient electromagnetic wavefields, IEEE Trans. Microwave
Theory Tech. 45 (December) (1997) 2139-2149.
[14] T. Rylander, A. Bondeson, Stable FEM-FDTD hybrid method for Maxwell’s equations, Comput. Phys. Commun. 125 (2000) 75-82.
[15] N.Marais, D.B. Davidson, Efficient high-order time domain hybrid implicit/explicit FEM methods for microwave electromagnetics, Electromagnetics 30
(2010) 127-148.



	On the relation between FDTD and Fibonacci polynomials
	Introduction
	The finite-difference state-space representation
	The FDTD update equations

	Fibonacci polynomials and FDTD
	Conclusions
	Acknowledgment
	References


