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Abstract — In this paper we show that the Finite-
Difference Time-Domain method (FDTD method)
follows the recurrence relation for Fibonacci poly-
nomials. This observation allows us to easily derive
the Courant-Friedrichs-Lewy stability condition by
exploiting the connection between Fibonacci poly-
nomials and Chebyshev polynomials of the second
kind. In addition, we compare FDTD with the Spec-
tral Lanczos Decomposition method (SLDM) and
show that to capture the evolution of the fields in
time, SLDM adjust itself to the spectrum of the sys-
tem matrix, while FDTD takes only extremal eigen-
value information into account.

1 INTRODUCTION

The Finite-Difference Time-Domain method
(FDTD method, see [1] and [2] for example) is
a very popular explicit time-stepping method
for Maxwell’s equations that hardly needs any
introduction. It is based on the first-order Maxwell
system and simultaneously solves for the electric
and magnetic field strengths. The time evolution
of the fields is captured by two coupled updating
formulas that can be combined into a single
recurrence relation involving the product of the
discretized Maxwell operator A and the time
step ∆t. As it turns out, this recurrence relation
is precisely the recurrence relation for Fibonacci
polynomials. The FDTD field approximations are
therefore Fibonacci polynomials in ∆tA acting
on the source vector of the problem at hand.
Stability and dispersion of FDTD can also be
analyzed in terms of these polynomials. We briefly
discuss stability in this context and refer to [3] for
further details. Finally, a comparison with Lanczos
model-order reduction (SLDM, Spectral Lanczos
Decomposition Method, [4] – [8]) shows that both
solution methods are polynomial methods in the
system matrix A. The FDTD recursion generates
Fibonacci polynomials, while SLDM generates
so-called Lanczos polynomials to approximate the
electromagnetic field quantities. Furthermore,
SLDM adjusts itself to the spectrum of the system
matrix A, while FDTD takes only the spectral
radius of the system matrix into account via the
Courant-Friedrichs-Lewy (CFL) stability condi-
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tion. There is no automatic spectral adjustment
as in SLDM.

2 BASIC EQUATIONS

After a standard spatial finite-difference discretiza-
tion procedure on a Yee-grid (see, for example, [1]
and [2]), we obtain the semidiscrete Maxwell sys-
tem

(D + M∂t)f = −w(t)q. (1)

In this equation, the field vector f is given by
f = [eT ,hT ]T , where e and h contain all time-
dependent finite-difference approximations of the
electric and magnetic field strength, respectively.
Furthermore, q = [(jext)T , (kext)T ]T is the source
vector, where jext and kext are the external finite-
difference electric and magnetic current density vec-
tors. The scalar time-dependent function w(t) is
called the source wavelet or source signature.

The spatial differentiation matrix is given by

D =

(
0 Dh

De 0

)
, (2)

where Dh is the discretized curl operator (including
a minus sign) acting on the magnetic field strength
and De is the discretized curl operator acting on the
electric field strength. Matrix D is skew-symmetric
with respect to a diagonal and positive definite step
size matrix W (see [9] and [10]). More precisely, we
have

DTW = −WD. (3)

Finally, the medium matrix M is given by

M =

(
Mε 0
0 Mµ

)
, (4)

where Mε and Mµ are diagonal and positive defi-
nite medium matrices with (averaged) permittivity
and permeability values on the diagonal.

To obtain an explicit expression for the solution
of Eq. (1), we premultiply this equation by the in-
verse of the medium matrix and obtain

∂tf = Af − w(t)s, (5)

where s = M−1q and where we have introduced
the system matrix as A = −M−1D. The solution
of Eq. (1) is now essentially given by a temporal

978-1-61284-978-2/11/$26.00 ©2011 IEEE

271



convolution of source wavelet and the evolution op-
erator exp(At).

The system matrix A is skew-symmetric with re-
spect to the energy inner product

〈x,y〉 = yTWMx,

that is, it satisfies 〈Ax,y〉 = −〈x,Ay〉 for all x,y ∈
Rn. The reason for calling the above inner product
an energy inner product is that 1

2‖f‖
2 = 1

2 〈f , f〉 is
a finite-difference approximation of the stored elec-
tromagnetic energy in the system.

Finally, we introduce the matrices Pe and Ph as

Pe =

(
Ine

0
0 0

)
and Ph =

(
0 0
0 Inh

)
,

where ne and nh denote the total number of electric
and magnetic field strength unknowns, respectively.
We say that a vector u is of the electric-type if it
satisfies u = Peu and a vector u is said to be of the
magnetic-type if it satisfies u = Phu. From this
moment on, we consider electric-type source vec-
tors only (no external magnetic current densities
are present), since the analysis for magnetic-type
source vectors runs along similar lines. A configu-
ration in which both electric and magnetic external
current densities are present can be handled using
the superposition principle.

3 THE FINITE-DIFFERENCE TIME-
DOMAIN METHOD AND FI-
BONACCI POLYNOMIALS

Introducing a time step ∆t > 0 and the time in-
stances tk = k∆t, we obtain after a leap-frog time
discretization of Eq. (1) the finite-difference time
stepping equations

h(tk+1/2) = h(tk−1/2)−∆tM−1
µ Dee(tk) (6)

and

e(tk+1) = e(tk)−∆tM−1
ε Dhh(tk+1/2). (7)

Notice that the magnetic field strength computed
in Eq. (6) is needed in the update equation for the
electric field strength (Eq. (7)). The above time
stepping equations are well known and can be found
in any book on the FDTD method ([1] and [2], for
example).

With the help of the FDTD vectors

gk =

(
0

h(t k+1
2

)

)
for k = 0, 2, 4, ... (8)

and

gk =

(
e(t k+1

2
)

0

)
for k = 1, 3, 5, ..., (9)

we can write the FDTD update equations as

gk+1 = ∆tAgk + gk−1, (10)

and comparing this with the recurrence formula for
Fibonacci polynomials

Fk+1(x) = xFk(x) + Fk−1(x), (11)

with F0(x) = 0 and F1(x) = 1, we observe that

gk = Fk(∆tA)g1. (12)

In other words, the FDTD vectors are Fibonacci
polynomials in ∆tA acting on the starting (source)
vector g1. Note that deg(Fk) = k − 1 and Fk(1) =
fk, where the fk are the Fibonacci numbers.

Stability and dispersion of FDTD can be ana-
lyzed in terms Fibonacci polynomials. We briefly
discuss stability and refer to [3] for further details.

Since matrix A is skew-symmetric with respect
to the energy inner product, there exists a matrix Q
such that

AQ = QΛ with QHWMQ = I, (13)

where Λ is a diagonal matrix with the eigenvalues
of A on the diagonal. Since these eigenvalues are
all located on the imaginary axis, we also write Λ =
iΣ, where Σ = Im(Λ). Now using the relation

Fk(2ix) = ik−1Uk−1(x), (14)

where Uk(x) is the Chebyshev polynomial of the
second kind and order k, we have

gk = ik−1QUk−1

(
∆t

2
Σ

)
QTWMg1. (15)

The Chebyshev polynomials Uk(x) remain bounded
for x ∈ (−1, 1) and become unbounded if x /∈
(−1, 1) as k → ∞. Using this property, we con-
clude from Eq. (15) that the FDTD vectors remain
bounded if and only if

∆t <
2

ρ(A)
, (16)

where ρ(A) is the spectral radius of matrix A.
Equation (16) is the famous CFL stability condi-
tion for FDTD [3].

4 THE SPECTRAL LANCZOS DECOM-
POSITION METHOD

As mentioned above, the system matrix A is
skew-symmetric with respect to the energy inner
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product and therefore Lanczos reduction for skew-
symmetric matrices is possible. This reduction is
carried out via the recursion

ri+1 = Avi + βivi−1,

βi+1 = ‖ri+1‖,
vi+1 = ri+1/βi+1,

(17)

with v0 = 0, β1 = ‖s‖, and v1 = s/β1 is the
normalized source vector (normalized means hav-
ing an energy norm equal to one). The vectors vi
are known as Lanczos vectors and the vectors ri
are often called residual vectors. Lanczos vectors
are normalized residual vectors.

After m iterations of the above Lanczos algo-
rithm, the Lanczos vectors vi form an orthonormal
basis (with respect to the energy inner product)
of the Krylov space Km = span{s,As, ...,Am−1s}.
Electromagnetic field approximations are taken
from this space. Explicitly, the mth order approxi-
mation is given by

fm(t) = c1(t)v1 + c2(t)v2 + ...+ cm(t)vm = Vmc,
(18)

where the Lanczos vectors form the columns of ma-
trix Vm and c = [c1, c2, ..., cm]T is a vector of time-
dependent expansion coefficients. Notice that

vi = pi−1(A)v1 = β1pi−1(A)s, (19)

where pi−1 is a so-called Lanczos polynomial of de-
gree i− 1. Furthermore, the expansion coefficients
follow from a Galerkin procedure as

c(t) = −β1
∫ t

τ=0

w(τ) exp[Tm(t− τ)] dτ e1, (20)

where e1 is the first column of the m-by-m iden-
tity matrix Im and Tm is a tridiagonal and
skew-symmetric matrix of order m containing the
recurrence coefficients and is given by Tm =
tridiag(βi, 0,−βi+1). Substituting the expansion
coefficients in Eq. (18), we obtain the mth order
SLDM field approximation

fm(t) = −β1Vm

∫ t

τ=0

w(τ) exp[Tm(t− τ)] dτ e1.

(21)
Notice that the time coordinate is not discretized
in SLDM and

fm(t) = p̃m−1(A)s, (22)

where p̃m−1 is a polynomial of degree m − 1 with
time-dependent coefficients.

5 RELATION BETWEEN THE FDTD
METHOD AND SLDM

From Eqs. (12), (19), and (22) we observe that
FDTD and SLDM are both polynomial time-
integration methods in the system matrix A. The
FDTD method generates Fibonacci polynomials,
while SLDM generates Lanczos polynomials to ap-
proximate the electromagnetic field. Now in both
methods the polynomials act on the source vec-
tor and this vector is of the electric-type (as men-
tioned before, a magnetic-type current vector can
be handled similarly). Furthermore, we also have
APe = PhA and from the Lanczos recursion (17)
it then follows that the residual vectors satisfy

ri =

{
of the electric-type if i is odd,

of the magnetic-type if i is even.

We make this explicit by introducing the vectors ẽk
and h̃k+1/2 through the relations(

ẽk
0

)
= r2k−1 and

(
0

h̃k+1/2

)
= r2k, (23)

for k = 1, 2, ... . Clearly, ẽk equals the electric-
part of an odd-numbered residual vector, while
h̃k+1/2 equals the magnetic-part of an even num-
bered residual vector. Since the residual (and Lanc-
zos) vectors have this particular form, we always
carry our an even number of Lanczos iterations.
The electric and magnetic field strengths are then
equally updated.

In the Lanczos recursion, we now first take i odd.
With i = 2k − 1 we get in terms of the residual
vectors

r2k =
1

β2k−1
Ar2k−1 +

β2k−1

β2k−2
r2k−2. (24)

Second, we take i even. With i = 2k, we obtain

r2k+1 =
1

β2k
Ar2k +

β2k
β2k−1

r2k−1. (25)

Using Eq. (23), these two equations can be written
as(

0

h̃k+1/2

)
=

1

β2k−1
A

(
ẽk
0

)
+
β2k−1

β2k−2

(
0

h̃k−1/2

)
(26)

and(
ẽk+1

0

)
=

1

β2k
A

(
0

h̃k+1/2

)
+

β2k
β2k−1

(
ẽk
0

)
.

(27)
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Substituting the definition of the system matrix in
the above expressions, the magnetic (bottom) part
of Eq. (26) gives

h̃k+1/2 =
β2k−1

β2k−2
h̃k−1/2 −

1

β2k−1
M−1

µ Deẽk (28)

and the electric (upper) part of Eq. (27) gives

ẽk+1 =
β2k
β2k−1

ẽk −
1

β2k
M−1

ε Dhh̃k+1/2. (29)

Comparing these expressions with the FDTD up-
date equations (6) and (7), we observe that the
FDTD method and the Lanczos algorithm both use
the same recurrence relation. Only the recurrence
coefficients are different. Specifically, computing
the residual vector of Eq. (17) using βi = 1/∆t
for all i results in the FDTD method, while the
Lanczos algorithm is obtained if we normalize the
residual vectors by βi = ‖ri‖ at every iteration. To
summarize, computing the residual vector ri with

βi =

{
1/∆t results in the FDTD algorithm,

‖ri‖ results in the Lanczos algorithm.

Since the Lanczos recurrence coefficients are con-
tained in the tridiagonal matrix Tm and since this
matrix approximates the eigenvalues of the system
matrix A, we observe that SLDM automatically ad-
justs itself to the spectrum of the system matrix.
In FDTD, however, only extremal eigenvalue infor-
mation is taken into account via the CFL stability
condition. Also note that if the coefficients βi in
the Lanczos algorithm approach a constant β > 0
then the residual vectors of the Lanczos algorithm
turn into the field vectors of FDTD with time step
1/β.

6 CONCLUSIONS

The FDTD method and SLDM are both polyno-
mial method in the system matrix A. We have
shown that FDTD generates Fibonacci polynomi-
als, while SLDM generates Lanczos polynomials to
approximate the electromagnetic field. In the lat-
ter method there is no time step selection (the time
coordinate remains continuous) and SLDM adjusts
itself automatically to the spectrum of the system
matrix when time integrating Maxwell’s equations.
In contrast, FDTD takes only extremal eigenvalue
information into account via the CFL stability con-
dition. This condition can be obtained by exploit-
ing the connection between Fibonacci polynomials
and Chebyshev polynomials of the second kind.
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