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Abstract—The variational waveform model is employed to
represent and propagate voltages in statistical delay calculation
in the presence of process variations. In the existing variational
waveform models, the voltage sensitivity with respect to process
variations is required. In this paper, we present a first-order
model based method which is used to generate the sensitivity
equation from random nodal analysis (NA) or modified NA
(MNA) equation of every gate. The sensitivity calculation method
is general for all ViVo-based gate models. The proposed algorithm
is verified with standard cells, simple digital circuits and ISCAS
benchmark circuits for statistical delay calculation. The results
demonstrate the high accuracy and speedup of our algorithm
compared to SPICE Monte-Carlo-based simulations.

I. INTRODUCTION

Static Timing Analysis (STA) tools are widely used for
performance verification due to their ability to perform ef-
ficient timing checks on large chips. In early times, the
nonlinear delay model (NLDM) was widely used for STA
which models the gate delay as a nonlinear function of input
slew (Sin) and output effective capacitance (Ceff ). As tech-
nology downscaled into ultra-deep sub-micron region, noise
and coupling considerations require advanced gate modeling
for STA. Criox and Wong proposed a current source drive
models (CSDM) which model every gate by a current source
and one capacitor [1]. These elements are dependent on input
and output voltages, thus the CSDM can handle arbitrary input
waveform and output load. However, since CSDMs model gate
with only one input and one output and have the assumption
that one input is switching while others are static, some
effects, such as internal charge sharing and multiple input
simultaneous switching (MISS) [2], are not considered. These
issues are addressed by transistor-level gate models which
achieves higher accuracy for STA [3]–[5].

The downscaling of technology brings a significant increase
in the device and interconnect manufacturing process varia-
tions. Therefore, there is a need for advanced analysis tools
which can handle variability caused by imperfect manufac-
turing processes. In order to capture the impact of process
variations on gate behavior, the corner based method can be
used which performs STA at multiple corners. Clearly, the
results are still deterministic not statistical. Although STA
is accurate at every corner thanks to the higher-quality gate
models, the corner-based method is too pessimistic since it is
close to impossible for all process parameters to have extreme
values. Additionally, if the number of process variations is

Np, there are 2Np process corners —far too many to analyze.
Consequently, the increasing number of process variations
poses a major obstacle for deterministic corner-based STA, and
statistical timing analysis becomes more and more attractive.

In statistical timing analysis, the signal propagation is crit-
ical for both block-based and path-based timing verification.
The accuracy of the signals propagated through gates highly
depends on the accuracy of variational waveform models
(VWMs). Although there are some waveform models for
accurate STA, such as Weibull waveform model [6], they have
not been extended to consider process variations. To realize the
potential accuracy of CSDM and transistor-level gate models, a
variational waveform models which can accurately represent
real waveforms is required. There are two major published
variational waveform models: i) VWM1. The voltage at every
time point is a linear function of process variations [7], [8]; ii)
VWM2. The voltage at every time point is modeled by four
parameters to represent voltage scaling, voltage shifting, time
scaling and time shifting [9]. Singular value decomposition
[10] and principal component analysis [11] can also be utilized
for variational waveform propagation. However, the efficient
application for statistical timing analysis of large circuits is
unclear.

VWM1 model was used for statistical delay calculation
from variational waveform in [7], [8], [12]. Based on time do-
main integration of statistical variables, the variational output
voltages are calculated considering only the variational input
signals in [8]. All elements in simple CSM are modeled as a
linear function w.r.t. process variations in [7]. The variational
voltages are computed from a stochastic first-order expression
in terms of process variations. Then the output voltage is
treated as a Markovian process for delay distribution calcu-
lation [7]. In [9], the variational waveform model considers
voltage scaling and shifting and time scaling and shifting. In
both VWM1 and VWM2, the voltage sensitivity with respect
to (w.r.t.) process variations of interest is required. For simple
CSDMs, due to the one-input one-output simplified model, the
equation for gate simulation is easy to solve. However, for the
optimized CSDMs and transistor-level gate models, since more
nodes are considered for MISS and internal charge effects,
the gate equation becomes more complex. How to efficiently
calculate the voltage sensitivity for complex gate models is
challenging.

In this paper, we present a first-order model based method



which is used to generate the sensitivity equation from random
nodal analysis (NA) or modified NA (MNA) equation of
every gate. The sensitivity calculation method is general for
both CSDMs and transistor-level gate models. The accurate
statistical simplified transistor model (SSTM)-based gate mod-
eling [5] is chosen for experiments. The proposed algorithm
is verified with standard cells, simple digital circuits and
ISCAS benchmark circuits. The results demonstrate the high
accuracy of our algorithm compared to Spectre Monte-Carlo-
based simulations.

II. VOLTAGE SENSITIVITY IN VARIATIONAL WAVEFORM
MODELS

Signal propagation is the corner stone of timing analysis,
the accuracy of which is highly dependent on the how signal
waveforms are modeled. A good variational waveform model
(VWM) should easily predict the actual waveform in the
presence of variations. The construction of such VWM has
not been well-addressed in the literature.

In [7], [8], [12], VWM1 is proposed to consider the voltage
at every time step as a linear function of process variations ξ.
In the VWM1, the coefficients are voltage sensitivity w.r.t. ξ
shown in Fig. 1. To include the waveform scaling and shifting
(shown in Fig. 1 (a)-(d)), a compact modeling of variational
waveform VWM2 was proposed in [9] and expressed as:

V (t) = (1 + C)Vnom(t − A(t − t0) − B) + DVdd (1)

where A, B, C and D are the values of time and voltage
shifting or scaling terms. In order to capture the impact of
process variations, A ∼ D are represented as a linear function
of ξ. A and B are calculated based on the voltage sensitivity
w.r.t. ξ. Both of VWMs were introduced for voltage calculation
on simple CSMs. However, the calculation complexity is
significantly increased when applying them for multi-port CS-
DMs [2] and transistor-level gate models [3]–[5]. Therefore,
the voltage sensitivity is the the core of these VWMs which
must be efficiently calculated for more accurate and complex
gate models [2]–[5].

(a) (b) (c) (d)

VWM1 VWM2

Fig. 1. The variational waveform models VWM1 and VWM2

III. VOLTAGE SENSITIVITY CALCULATION

Nodal analysis (NA) or modified NA (MNA) is used for
gate simulation of CSDMs and transistor-level gate models
[3]–[5], [7], [8], [12], [13]. If process variations are included,
the NA/MNA equation is typically a random differential equa-
tion (RDE). In this section, we propose a voltage sensitivity
calculation method based on truncated Taylor expansion which
needs simulation only once.

A. nominal voltage calculation

By using first-order Taylor expansion, the variational volt-
age ˆv(t) can be expressed as follows:

ˆv(t) = vs(t) +

(
∂ ˆv(t)
∂p

| ˆv(t)=vs(t);ξ=0

)
ξ

= vs(t) + Ψ(t)ξ (2)

where vs(t) is the nominal voltage when there is no process
variations, and p is the process parameter value with nominal
value P0 and process variation ξ. ξ has mean zero and standard
deviation σξ. The voltage sensitivity Ψ(t) is what we need
to calculate for variational waveform models. It should be
noted that (2) is the expression of VWM1. Since α(t) is the
derivative around the nominal voltage vs(t), vs(t) should be
calculated.

When there is no process variations, the vs(t) is calculated
during typical STA procedure based on CSDMs or transistor-
level gate models [3]–[5]. By using efficient threading algo-
rithm and multiple processors, [4] shows that it is practical
to use transistor-level gate models for multi-million gate STA
runs to reach the combination of accuracy and speed.

B. voltage sensitivity calculation

During STA, the NA equation of every gate can be written
in the compact format:

F (v̇, v, t, p0) = 0 v(t0) = v0 (3)

where v(t) denotes the node voltage vector, v̇ is its time
derivative and p0 represents the nominal process parameter
value vector. In our simulator, the NA equation is further
simplified by moving input voltages to the right hand side
since they are known. Consequently, v consists of internal and
output node voltages only. Since vs(t) is the nominal voltage,
it is the solution of (3) which satisfies:

Fs = F (v̇s, vs, t, p0) = 0 x(t0) = x0 (4)

Since all process parameters have their nominal values p0,
vs(t) is deterministic. vs(t) is obtained by the method in-
troduced in Section III-A. However, if process variations are
considered the solution becomes statistical.

If we take into account process variations, (3) becomes a
random differential equation (RDE):

Fx = F ( ˙̂v, v̂, t, ξ) = 0 ˆv(t0) = x0 + δ0 (5)

where ξ is the process variation vector which includes both
global and local variations, and δ0 denotes the initial condition
variation caused by process variations. It is worth noticing
that the main difficulty to solve (5) is the high nonlinearity
with respect to random variables ξ and the large number
of process variations including local variations. In order to
prevent exponential increase in the number of variables, the
local variables can be collapsed into a single variable [4]. In



order to make (5) manageable, it is linearized by a truncated
Taylor expansion around vs and p0.

Fx ≈ Fs +
∂Fs

∂v̇s
(t)( ˙̂v(t) − v̇s(t))

+
∂Fs

∂vs
(t)( ˆv(t) − vs(t)) +

∂Fs

∂p0
(t)ξ = 0 (6)

Inserting (2) to (6) and replacing the matrices ∂Fs/∂v̇s,
∂Fs/∂vs and ∂Fs/∂p0 with C(vs), −E(vs) and −F(vs),
respectively, we obtain:

C(vs)Ψ̇(t)ξ = E(vs)Ψ(t)ξ + F(vs)ξ (7)
C(vs)Ψ̇(t) = E(vs)Ψ(t) + F(vs) (8)

The C, E and F are Nv×Nv , Nv×Nv and Nv×Np matrices
respectively, where Nv is the number of unknown nodes
and Np is the number of process variations. Consequently,
the Ψ(t) equation is extracted from the nonlinear random
differential equation (5). The difficulty of solving (8) is from
the high-dimensionality of the matrix Ψ(t) which is Nv ×Np.

Based on moment matching, (8) is split into Np ordinary
differential equations (ODEs):

C(vs)Ψ̇j(t) = E(vs)Ψj(t) + Fj(vs) j = 1 : Np (9)

where Fj and Ψj are the jth column of F and Ψ, re-
spectively. After using a numerical integration method, due
to vs-dependent coefficients C, E and Fj , (9) becomes a
linear algebraic equation (LAE). As a result, the voltage
sensitivity equation (8) is converted into Np typical LAEs
which are solved by Np iterations. The LAEs can be solved
fast without the necessity of root-finding iterations. Only LU
decomposition, and forward and backward substitution are
needed to solve the LAE. Additionally, the same coefficients
C and E of Np ODEs in (9) requires LU decomposition only
once to solve these Np ODEs.

C. statistical delay calculation

After computing the nominal voltage vs(t) and voltage
sensitivity Ψ(t), the variational voltage can be obtained based
on (2). According to the relationship in (2), the mean of
voltage and the standard deviation and covariance of every
two voltages can be calculated from the following:

E{v(t)} = vs(t) (10)
V ar{v(t)} = Ψ(t)E{ξξT }ΨT (t) (11)

Cov{v(ta), v(tb)} = Ψ(ta)E{ξξT }ΨT (tb) (12)

For timing analysis, the problem of interest is to compute
the moments of arrival time, gate delay or in general the
crossing time. The crossing time tη is defined as the first time
for voltages to cross the threshold voltage Vη = η% · Vdd.
By using a numerical integral method, e.g, backward Euler or
the trapezoidal rule, the solution of vs and Ψ at a specific
time point are calculated from that at the previous time point,
making the output v(t) a Markovian process [7], [14]. During
the period when the nominal voltage is in transition, the

calculation of crossing time cdf (Fn in (13)) starts and for
a rising transition this is expressed as:

Fn = P (tη ≤ tn) = 1 − P (tη > tn) = 1 − Gn (13)
Gn = P (v1 ≤ Vη ∩ v2 ≤ Vη ∩ . . . ∩ vn ≤ Vη) (14)

= P (vn ≤ Vη|vn−1 ≤ Vη, . . . , v1 ≤ Vη) · Gn−1(15)
= P (vn ≤ Vη|vn−1 ≤ Vη) · Gn−1(n = 2 : N) (16)

=
P (vn ≤ Vη ∩ vn−1 ≤ Vη)

P (vn−1 ≤ Vη))
· Gn−1 (17)

where vi is the voltage of interest at time ti. According to
the properties of a Markovian process v(tn), (15) is rewritten
in (16). Based on (13) to (17) an iteration method is used
to calculate the cdf of the corresponding crossing time with
initial condition G1=1. Given the moments and covariances
calculated in the RDE-based statistical simulator, the joint
probability and single probability in (17) are easy to obtain.
From the cdf , the discretized pdf of crossing time is calculated
[14].

IV. EXPERIMENTAL RESULTS

The proposed model and algorithm were implemented and
verified on a set of gates and circuits in the nangate 45nm
technology [15]. Transistor-level 10000 Monte Carlo(MC)
simulation results are regarded as the golden reference. VWM1
is used for variational waveform model. The gate delay distri-
bution is chosen for the metrics to verify the voltage sensitivity
accuracy.

In this paper, the voltage sensitivities were calculated based
on a accurate table-based statistical transistor model (STM)
[5]. In STM, every transistor is modeled as a current source
Ids and five capacitors (Cgs, Cgb, Cgd, Csb and Cdb). All
elements in the STM are represented as a linear function of
process variations of interest.

Since the MISS is a problem in statistical delay calculation,
we firstly apply the proposed method to some multiple-input
cells with MISS scenarios. The multi-input cells are NAND2,
NOR2, NOR3, NAND3, AOI21, AOI211, AOI22 and
NAND4. Fig. 2 - Fig. 4 shows the discrete pdf with 50
samples and the histogram of MC simulation in Spectre of
a NAND2 with falling output, AOI21 and AOI22 with rising
output. All inputs of each gate have the exact same mean
value of arrival times. The discrete pdf was scaled to provide a
straightforward shape comparison. The statistical input signal
at every input of a multi-input gate was modeled as ramp
signals of 100ps transition time with voltage variations. The
σ of voltages and arrival time differences among input signals
are varied to obtain results at diverse scenarios for every gate.
The µ errors are within 1%. All the σ errors are within 5%
except two biggest σ cases (6.02% and 6.42%) coming from
NAND4 with rising output and falling output respectively. All
of the skewness errors are within 7% [14].

We secondly used the proposed method for some cells
and circuits listed in Table I, where the absolute µ and σ
errors of delay distribution calculation are included. Effective
length Leff and threshold voltage Vth are chosen as the
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Fig. 2. The pdf and histogram comparison of NAND2
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Fig. 3. The pdf and histogram comparison of AOI211
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Fig. 4. The pdf and histogram comparison of AOI22

representative process variables, which both have 3σ equal
to 20% of the mean value. We applied the proposed method
to nine common standard cells with different input transitions.
Fig. 5 illustrates the average relative errors (absolute values)
of µ and σ for nine common standard cells. The worst σ errors
are −4.03% and 3.04% from AOI211 and XOR2 with falling
output respectively. The gates with more than 3 inputs in C432
and C499 are replaced with several logic gates with no more
than 3 inputs provided by gate library. 10K Monte Carlo-based
Spectre simulations are used for accuracy comparison. The
results show high accuracy of our method.
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Fig. 5. First-order voltage sensitivity calculation method for delay distribution
computation of standard cells. The numbers of 1 to 9 stand for INV, NAND2,
NOR2, BUF, AND2, XOR2, AOI211, NAND4 and MUX2 respectively [16].

TABLE I
THE ABSOLUTE VALUES OF DELAY µ AND σ ERRORS (UNIT: %) OF SOME

CIRCUITS COMPARED WITH 10K SPECTRE MC RESULTS [16].

name/value C17 Adder C432 C499
µ error 0.50% 0.01% 0.18% 0.81%
σ error 0.35% 0.05% 2.00% 2.19%

V. CONCLUSION

The voltage sensitivity is critical for the accuracy of many
variational waveform models, which models the impact of
manufacturing process variations and environment variations.
In this paper, we proposed a efficient method for voltage
sensitivity calculation for multiple-port CSDMs and transistor-
level gate models. In the proposed method, the sensitivity
equation is extracted from nodal analysis equations based on
the first order Taylor expansion. The equation is converted to
a linear algebraic equation after using numerical integration
methods, which is solved fast since the LU decomposition
needs to perform only once and no root-finding iterations are
required. The experiment results show high accuracy of the
proposed voltage sensitivity calculation method for statistical
delay calculation.
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