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Abstract—The increasing process variations which goes along
with the continuing CMOS technology shrinking necessitate
accurate statistical timing analysis. Multiple Input Simultaneous
Switching (MISS) is simplified to Single Input Switching (SIS)
in most of the recent approaches, which introduces significant
errors in Statistical Static Timing Analysis (SSTA). Hence, we
propose a new modeling and statistical analysis method to capture
statistical gate delay variations, able to accurately handle MISS.
Experiment results obtained with a 45nm technology show that
our approach accurately obtains not only mean and standard
deviation, but also the third moment, skewness.

I. INTRODUCTION

Static Timing Analysis (STA) tools are widely used for

performance verification due to their ability to perform ef-

ficient timing checks on large chips. However, STA faces a

number of accuracy issues related to false paths and MISS.

Since process variations do not shrink at the same ratio as

the process geometries, they have an increasing impact with

every new technology generation. Small changes in transis-

tor channel length and doping density cause more dramatic

changes in transistor behavior compared to older technologies.

The traditional corner-based STA is not able to accurately and

efficiently model delay variability. A better way to estimate

the variability of timing is to perform Statistical Static Timing

Analysis (SSTA), which models path or circuit delay varia-

tions as a function of all process variations of interest using

statistical techniques. SSTA comes in two flavors: path-based

SSTA and block-based SSTA. Although block-based SSTA

does not have the tough task to select critical paths considering

process variations like path-based SSTA, it requires a solution

to the basic statistical sum and maximum operations for the

propagation of arrival times from the source node to the

sink node. Since the maximum is a nonlinear function, the

maximum of two normal (Gaussian distributed) arrival times

at the inputs of a gate will result in a non-normal arrival time at

its output, typically with positive skewness. The error caused

by ignoring skewness in the maximum operation is larger

if the input arrival times have similar means but dissimilar

variances [1]. Approximations for the statistical maximum

operator have been proposed for both Gaussian [2] and non-

Gaussian random variables [3], but they use an assumption

of statistical independence between the input signals. The

computation of the exact statistical maximum also needs
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Fig. 1. Exact statistical simulation for MISS

exact correlation information among the input arrival time

variables, which requires extensive computation and storage

of dependence. In [6] and [7] discrete probability density

functions (pdf ) or cumulative density functions (cdf ) are used

to propagate statistical information, avoiding the maximum

operation, however they also assume independent arrival times

and circuit delay.

New methods for handling reconvergence and spatial corre-

lations have been proposed in block-based SSTA, for example

[4], [5]. In most of these approaches, there is a focus on the

correct computation of the statistical maximum, taking proper

correlation into consideration. However, an essential source of

calculation error is due to MISS, which can not be handled

accurately by the above methods, as they all use black-box gate

delay models, in which the electrical effect of multiple input

signals switching (near-)simultaneously is not modeled. These

black-box models only model SIS. The approach presented in

this paper uses gate models built out of statistical transistor

models, and is hence fundamentally capable of modeling the

effects of MISS.

MISS arises when multiple inputs of a gate switch in close

proximity in time. Fig. 1 explains the SIS assumption for

statistical delay analysis of a NAND2. In a SIS approach, it

is always assumed that only one input is switching while the

others are deterministic stable (Vdd for NAND). The output

arrival time distributions f(CA) and f(CB) are calculated

by propagating input distributions through the gate separately

based on SIS. The final distribution f(C) is found after

statistical maximum operation of f(CA) and f(CB). In

traditional timing analysis, MISS is a significant problem in

both STA and SSTA. It has been reported that not modeling

MISS can result in as much as 100% error in STA [8]. [9]

shows SIS underestimates the mean delay of a stage by up to

20% and overestimates the standard deviation up to 26%. The

existing SSTA approaches considering MISS mainly model

delay as a function (linear function, orthogonal polynomial or

high dimensional function) of the absolute input arrival times

[9]–[13]. Fixed distributions are required in [9]–[11] without



considering varying input slope in SSTA, which can also cause

significant errors [12], [13].

In this paper, we propose a stochastic waveform model

(SWM) and delay calculation method that include MISS

effects and process variations. As illustrated in Fig. 1, we

propose to consider all the inputs together and directly cal-

culate output statistical information avoiding the maximum

operation. The SWM has both varying crossing times and input

slopes. In our delay calculation algorithm, the discrete pdf of

crossing time was used. We tested our approach in circuits

with MISS up to four inputs. The first three moments—mean

(µ), standard deviation (σ) and skewness (γ) values were com-

pared to transistor-level Monte Carlo simulation. Experimental

results show that our approach gives accurate results for these

three moments even under MISS conditions.

II. MODELING AND STATISTICAL ANALYSIS

CONSIDERING MISS

A. Stochastic Waveform Model (SWM)

In traditional SSTA, the arrival time and gate delay are

represented as statistical variables while the slope variability is

neglected and treated as a deterministic value in the simplest

case. As only the arrival time distribution and deterministic

slope are known, the statistical waveform is represented by a

set of ramp signals shown in Fig. 2. However, the slope is

also an important factor which has direct effect on gate delay

[14]. [12] shows that large errors occur without considering

the varying slope of input signals. Fig. 2 also shows the

realistic stochastic waveforms of a buffer (left) and the output

waveforms of a 3-stage inverter chain (right) from Spectre MC

simulations. Clearly the stochastic waveforms are not exactly

symmetric with respect to the time axis. Similar to [15] and

[16], the variational voltage waveform is represented by a time

domain stochastic variable:

v(t) = v0(t) +

M∑

k=1

αk(t) · ξk (1)

where αk(t) is the sensitivity of voltage v(t) to the correspond-

ing process variation ξk. Therefore in our SWM, the voltage,

rather than crossing time, is modeled as a stochastic variable.

The sensitivity matrix α(t) is the parameter which must be

calculated during delay calculation. Given the statistical infor-

mation of process variations, the moments of and covariance

between voltages are easily obtained.
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Fig. 2. Stochastic waveform modeling

B. RDE-based Statistical Simulator

As technology scales to 45nm and below, the process

variations have greater impact on transistor behavior. To make

our gate model as physical (and hence accurate) as possible,

we create a gate model at the transistor level. For this paper, a

table-based statistical transistor model (STM) is used for gate

modeling [17]. Every transistor is modeled as a current source

Ids and five capacitors (Cgs, Cgb, Cgd, Csb and Cdb) as shown

in Fig. 3. All elements in the STM are represented as a linear

function of process variations of interest.
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Fig. 3. Transistor model

Monte Carlo is too CPU time intensive for statistical timing

analysis since normally at least 1000 runs are required and the

number grows when more random variables are considered.

As stated in Section II-A, the nominal voltages v0(t) and

sensitivity matrix α(t) must be calculated for SWM. In our

RDE-based statistical simulation algorithm [18], the random

circuit equation is processed directly to compute v0(t) and

α(t) in (1).

By introducing process variations, the random circuit equa-

tion can be expressed in compact form:

F (x′, x, t, ξ) = C(t, ξ)x′(t, ξ) + G(t, ξ)x(t, ξ) = J(t, ξ) (2)

where x is the nodal voltage vector including all input and

output voltages and x′ is its time derivative. G and C are

the conductance and capacitance matrices and J is a current

source value vector. The equation can be further simplified by

eliminating and moving Vdd and input voltages to the right

side since they are known. If there are no process variations

(ξ=0), the equation is a typical transient analysis equation

F (x′, x, t) = 0 and the solution is denoted as xs(t) in this

paper. In order to manage the random nonlinear equation (2),

Taylor expansion is used to linearize (2) at the nominal value

x′

s(t), xs(t) and the mean values of the process variables P0.

After linearization, the random equation is converted to

a linear random differential equation (RDE). Denoting the

voltage variation as y(t) = x(t) − xs(t), the RDE equation

can be written as:

y′(t) = R(t)y(t) + Q(t)ξ (3)

R(t) = −C−1(G − ∂J/∂x) (4)

Q(t) = C−1∂J/∂p (5)

If the ∂C/∂p and ∂G/∂p are comparable to ∂J/∂p, they must

be included in (5). If C is singular, it stays in the left of (3).

According to the mean square integral theorem, the solution

of (3) is proportional to ξ assuming the initial value is not

random [19]. Using α(t) as the coefficient of proportionality

and substituting y = αξ in (3), the equation for α(t) turns out

to be an ordinary differential equation:

α′(t) = R(t)α(t) + Q(t) (6)



which can be solved by fast numerical methods. After solv-

ing xs(t) and (6), the stochastic output waveform model is

obtained in (1). Based on the moments and correlations of

process variations, the moments of voltage can be calculated

by using common statistical operations.

C. Delay Moments Calculation

For timing analysis, the problem of interest is to compute

the moments of arrival time, gate delay or in general the

crossing time. The crossing time tη is defined as the first time

for voltages to cross the threshold voltage Vη = η% · Vdd.

By using a numerical integral method, e.g, backward Euler or

the trapezoidal rule, the solution of xs and α at a specific

time point are calculated from that at the previous time

point, making the output x(t) a Markovian process. During

the period when the nominal voltage is in transition, the

calculation of crossing time cdf (Fn in (7)) starts and for a

rising transition this is expressed as:

Fn = P (tη ≤ tn) = 1 − P (tη > tn) = 1 − Gn (7)

Gn = P (v1 ≤ Vη ∩ v2 ≤ Vη ∩ . . . ∩ vn ≤ Vη) (8)

= P (vn ≤ Vη|vn−1 ≤ Vη, . . . , v1 ≤ Vη) · Gn−1 (9)

= P (vn ≤ Vη|vn−1 ≤ Vη) · Gn−1(n = 2 : N) (10)

=
P (vn ≤ Vη ∩ vn−1 ≤ Vη)

P (vn−1 ≤ Vη))
· Gn−1 (11)

where vi is the voltage of interest at time ti. According to

the properties of a Markovian process v(tn), (9) is rewritten

in (10). Based on (7) to (11) an iteration method is used

to calculate the cdf of the corresponding crossing time with

initial condition G1=1. Given the moments and covariances

calculated in the RDE-based statistical simulator, the joint

probability and single probability in (11) are easy to obtain.
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Fig. 4. Cumulative density function and discrete probability density function

To simplify the calculations, the cdfs and pdfs have these

properties: i) cdf = 1 if cdf ≥ cdfmax and cdf = 0 if cdf ≤
cdfmin. The time tstart and tend are the time corresponding

to cdfmin and cdfmax respectively shown in Fig. 4; ii) the

pdf is calculated during the period [tstart tend]. At any time

tn, the discrete pdf is approximated by pn =
∫ tn

tn−1

pdf(t)dt

with p(tstart) = 0.

The next step is to restrict the cdf within tstart and tend (de-

noted cdfr in this paper), shown in Fig. 4. Since the simulation

uses a dynamic time step algorithm for efficiency, the cdfr
needs to be uniformly sampled for pdf computation. After

uniformly sampling cdfr with Ns samples and interpolating

cdfr, the resulting time vector T1 and cdfu vectors are used to

calculate the pdf vector Λ with element Λk = cdfuk−cdfuk−1

(Λ1 = 0).

The last step is to calculate the moments of crossing time.

Denoting ΛT as the transposition of the row vector Λ, the

calculation method can be explained as following:

µ = T1Λ
T (12)

σ = T2Λ
T − µ2 (TNk = TN

1k k = 1 : Ns) (13)

γ = (Γ − 3µσ2 − µ3)/(σ3) (Γ = T3Λ
T ) (14)

The calculation method for a falling transition is similar to

the above methods with the only difference in (8). By replacing

vi by Vdd − vi, (8) to (11) are still used in the same way. If

the waveform is non-monotonic and crosses Vη multiple times,

the method above can be used to iteratively find all crossing

times.

III. EXPERIMENTAL RESULTS

The proposed model and algorithm were implemented and

tested on a set of gates and circuits in the 45nm PTMVTG

technology [20]. Transistor-level Monte Carlo(MC) simulation

results (2500 samples) are regarded as the golden reference.

Fig. 5 shows the discrete pdf with 50 samples and the

histogram of MC simulation in Spectre of a NAND2 with

falling output, AOI21 and AOI22 with rising output. All inputs

of each gate have the exact same mean value of arrival times.

The discrete pdf was scaled to provide a straightforward shape

comparison. In the beginning, the statistical input signal at

every input of a multi-input gate was modeled as ramp signals

of 100ps transition time with voltage variations. The σ of

voltages and arrival time differences among input signals are

varied to obtain results at diverse scenarios.

Table I1 lists the average error of mean (µ), standard

deviation (σ) and skewness (γ) of delay in gates with different

levels of complexity. It shows that the worst average σ and

γ error occur in NAND4 and NAND3 respectively. These

gates have the most transistors stacked among the gates with

corresponding same number of inputs. Fig. 6 illustrates the

errors of all the experiments. The µ errors are within 1%.

All the σ errors are within 5% except two biggest σ cases

(6.02% and 6.42%) coming from NAND4 with rising output

and falling output respectively. All of the skewness errors

are within 7%. We also simulated two combinational circuits

(COM1 and COM2 in Table I) with identical paths to the

output gate. The process variables are taken to be length and

width with 3σ of 20% and 43% of the mean value. By using

identical input signals switching at the same time, the inputs of

the output gate has MISS and realistic waveforms produced

by process variations like the curves in Fig. 2. The results

of COM1 and COM2 are compared to 10000× MC results

in Spectre. It is observed that the smaller the arrival time

difference, the larger skewness, so the skewness should not

1importantance sampling-based MC was used for all senarios of NAND2
and NOR2 as comparison references
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Fig. 5. pdf and histogram comparison of NAND2, AOI21 and AOI22

be ignored. The experiment results indicate the necessity of

skewness estimation and the ability of the proposed method

to accurately calculate three moments.

Compared to 1000 MC runs, our method achieves

62×speedup on average. Although our method only needs

to simulate once for statistical output voltages, the equations

of the RDE-based statistical simulation have an extra set

of equations for α computation in (1) and need sensitivity

calculation for (3), which slows down the simulation. We are

working on using a faster differential equation solver, even

higher speedup is expected.

TABLE I
ACCURACY COMPARISON OF THREE MOMENTS FOR MULTI-INPUT GATES

errors of rising output errors of falling output

cell µ σ γ µ σ γ

NAND2 0.52% 2.00% 2.52% 0.20% 1.14% 2.20%
NOR2 0.38% 1.03% 3.07% 0.15% 1.73% 2.91%
NOR3 0.55% 0.82% 3.26% 0.15% 1.90% 2.82%

NAND3 0.70% 2.38% 5.52% 0.41% 2.04% 3.05%
AOI21 0.04% 1.56% 2.00% 0.09% 1.34% 1.71%
AOI211 0.13% 3.06% 2.62% 0.04% 1.84% 4.33%
AOI22 0.04% 0.65% 1.60% 0.19% 1.68% 3.06%

NAND4 0.75% 4.48% 2.70% 0.33% 4.54% 3.27%

COM1 0.93% 1.99% 4.00% 0.37% 3.89% 4.26%
COM2 0.64% 4.39% 5.10% 0.41% 5.58% 5.75%
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Fig. 6. All moment percentage errors comparison

IV. CONCLUSION

The errors introduced by the SIS assumption and statistical

maximum operation motivate us to propose a novel modeling

and simulation method to capture process variations and MISS,

avoiding the maximum operation. We represent variational

waveforms of any shape in time domain statistical variables

including the influence of slope. The transistor-level gate mod-

eling and RDE-based statistical simulation method provides

variational output waveforms, from which the moments of

crossing times are computed. Due to the increasing process

variations and continuing shrinking technology, the µ and σ
are not always enough to represent variational gate delay.

Additionally in this paper we computed the skewness of gate

delay. Experimental results indicated the high accuracy of our

approach compared to Monte Carlo simulations.
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