
Cit: A GCC Plugin for the Analysis and
Characterization of Data Dependencies in Parallel

Programs

Sumeet S. Kumar, Anupam Chahar, Rene van Leuken
Circuits and Systems Group, Faculty of EEMCS,

Delft University of Technology,
s.s.kumar@tudelft.nl

Abstract—Management of shared data accesses by concurrent
tasks is a challenging aspect of parallel programming. In this
paper, we present the Cit, a plugin for GCC that performs
compile-time analysis and characterization of data dependencies
between concurrent tasks within parallel programs. Dependencies
are classified as Always Conflict (AC) and May Conflict (MC) based
on the likelihood of them resulting in a conflict, according to
the nature of their reference, their location within the control
flow and their dependence on input data. Furthermore, Cit
reports load-store volumes for concurrent tasks, thus enabling
estimation of their approximate data set size. The Cit plugin
is shown to accurately detect data dependencies within standard
benchmarking workloads and characterize all conflicts that could
arise due to them. The entire analysis is performed during
compilation, and incurs a runtime ranging from a few seconds
to a few minutes. The results of Cit’s analysis form a critical
feedback to programmers, allowing visualization of program data
dependencies, and enabling exploration of inherent parallelism.

I. INTRODUCTION

Parallel programming in the many-core era is an inherently
complex task requiring careful management of shared data
accesses. Applications that derive large benefits from high
performance many-cores often exhibit significant amounts of
Disjoint Access Parallelism (DAP) in their critical sections [1].
Non-disjoint concurrent accesses by concurrent tasks necessi-
tate the enforcement of mutual exclusion using locks to prevent
data races and incorrect execution. The pessimistic use of locks
however leads to poor speedup despite the available computing
power. The granularity and placement of shared data locks are
thus critical towards exploiting the potential of modern many-
core processors.

Transactional Memory (TM) [2] simplifies this by elim-
inating lock-based critical sections within concurrent tasks,
instead replacing them with atomic transactions. Accesses to
shared data otherwise protected by locks, are detected in TM
systems at runtime through a conflict detection scheme, which
in the event of a conflicting memory access, results in all
but one amongst the contending transactions to abort and
restart their work. Although the replacement of locks with such
speculative transactions decreases programming complexity,
it results in degraded execution performance in the case of
large transactions that repeatedly perform conflicting memory
accesses. For a pair of concurrent transactions that perform
updates to different elements of a shared data structure based
on the outcome of a conditional test on some input data, the

target of each memory access made by the transactions is
determined according to the branch. Consequently, while there
is the possibility of the two transactions conflicting due to
non-disjoint accesses, it is also possible that the two are often
independent. Thus dependencies between transactions can be
characterized as either Always Conflict (AC) or May Conflict
(MC) depending on the likelihood of them actually resulting
in a conflict during execution.

In this paper, we present the Cit plugin for GCC, that
analyzes and characterizes dependencies between concurrent
tasks in parallel programs at compile-time. Data dependencies
between concurrent tasks are determined through a combi-
nation of custom intra- and inter-procedural analysis passes
that analyze data use and control flow within the program.
Dependencies are thus identified as type AC or MC based
on the nature of their reference, presence of conditional
branches, input data dependence, and their location within
the control flow. Furthermore, Cit provides a visualization
of the program structure and data sharing using generated
graphs, and reports estimated load-store volumes for analyzed
compilation units and the presence of common TM-specific
performance pathologies in the program code. Cit is intended
as an aid to programmers developing applications for parallel
environments. The plugin provides critical feedback regarding
the structure of the program as well as the nature and location
of dependencies between its constituent tasks. As such, these
results could be used in the parallelization of sequential code,
the placement and refinement of shared data locks, analysis
and optimization of C code for high-level hardware synthesis,
and towards the selection of suitable conflict management
strategies based on dependency types and workload character-
istics in the case of TM applications. In this paper, we focus
primarily on the characterization of TM programs.

The rest of this paper is organized as follows: Section
II provides an overview of the state of the art. Section III
introduces the Cit plugin and describes its constituent analysis
stages and Section IV its implementation in GCC. Section
V experimentally validates the plugin, and reports the results
from its analysis of transactional workloads including those
from the STAMP benchmark suite, alongside their generated
data dependency graphs. Finally, Section VI provides conclud-
ing remarks on the presented Cit plugin.



II. RELATED WORK

A number of techniques exist in literature for the analysis
of dependencies in parallel programs. A significant portion of
such literature is devoted to approaches that use execution pro-
filing to characterize applications and detect data dependencies.
Embla [3] is one such tool that uses execution profiling to
detect data dependencies in sequential programs, and thus in-
dicate opportunities for parallelization. QUAD [4] on the other
hand analyzes memory accesses by communicating functions
to determine potential data dependencies. Such approaches
however require a wide variety of data sets and multiple
execution runs in order for their results to represent common-
case application behaviour. Static analysis techniques on the
other hand provide a worst-case estimate of an application’s
dependencies, with a shorter runtime. SvS [5] is a technique
that uses data dependency information gathered through static
analysis in determining an optimal task schedule for parallel
programs. The technique essentially determines the set of pos-
sible data dependencies that can occur in the program through
a compile-time reachability analysis, and later refines this
set through execution profiling at runtime. The approximate
nature of the static analysis does not take the task’s control
flow into account and thus yields very conservative depen-
dency estimates. Increased accuracy at this stage may improve
execution performance by decreasing the incurred overheads
due to runtime refinement. Mannarswamy and Govindarajan
presented schemes to improve the performance of software
transactional memory through compiler-assisted lock assign-
ment [6], and through the compiler-directed handling of certain
conflicts between transactions [1]. Both these schemes rely on
the standard inter-procedural analysis of the Open64 compiler,
and its generated data dependency graph. Transactions are
classified based on this analysis as either always conflicting or
as disjoint. The existence of may conflict dependencies causing
transactions to sometimes conflict however, is not considered
in this analysis, resulting in pessimistic dependency estimates.
Cit on the contrary, categorizes dependencies according to their
location within the control flow and takes into account the
presence of conditional branches and input dependence while
estimating the likelihood of dependencies causing a conflict.

III. CIT ARCHITECTURE

Understanding the data usage patterns of concurrent tasks
is essential in determining possible data dependencies within
the program. We consider concurrent tasks to be transactional
functions containing assignment statements as well as function
calls, and uncovering data dependencies between them requires
an analysis of each function as a separate unit. Cit uses
intra-procedural analysis to gather data definitions such as
assignment operations and variable usage, as well as control
flow within functions. This yields a detailed snapshot of each
function within the program and its variables. Inter-procedural
analysis uses such snapshots in addition to the list of calls from
the call graph in its analysis, and thus determines possible data
dependencies between functions and their type (AC/MC). The
worst-case load-store volume for each function, and detection
of potential performance pathologies are also obtained from
the captured data and control flow for each function. Figure 1
illustrates the four analysis stages of the Cit plugin.

Fig. 1. Stages of the Cit analysis methodology

A. Initial Analysis

In the first stage, a basic analysis of the application is
performed in order to gather global variable declarations, and
formal parameters of functions. These are necessary during
inter-procedural data flow analysis for identifying dependen-
cies that result from calls to specific functions. Both, the
formal parameters corresponding to functions as well as global
variables are logged in a database for use in subsequent stages.

B. Intra-Procedural Analysis

During this stage, each function in the application is
analyzed individually in order to determine local control and
data flow, load-store volume and the presence of branches. A
set of define-use/use-define relationships are built through the
analysis of each function body. Since such liveness analyses
consider execution of the function body to be sequential, all
definitions for a variable preceeding the newest are killed.
However, data dependencies always remain, irrespective of the
liveness of the definition they result from at any given point in
the function’s execution. This is especially the case when a new
definition uses an older definition that it subsequently replaces.
Killed definitions are therefore also taken into account while
building the dependency graph during inter-procedural data
flow analysis. Indirect references using pointers form a com-
plex part of this analysis since their actual targets cannot be
accurately determined at compile-time unless such references
use constant offsets. In such cases, ignoring dynamic offsets
altogether still yields a basic dependency relation with respect
to the base of the data structure being referenced. Inter-
procedural dependencies may exist in the form of arguments
in function calls and pointer references within the body of the
function being analyzed, or in global variables. Cit therefore
extracts the call graph of each analyzed function together
with the arguments passed to each callee within the function
body, and maps these to the formal parameters previously
logged in the database during Initial Analysis. This ensures
that dependencies can be tracked deep into callee functions,
from where they could potentially cause global non-disjoint
accesses. In addition to dependencies, Cit also logs the size of
load-store operations that occur within functions. The control
flow when overlaid with this information yields estimates of
load-store volumes along each control path in the function.
The estimation however is in terms of basic blocks alone,
and therefore, in the event of an intermediate function call,
the corresponding worst-case load-store path in the callee
function is included in computing the calling function’s load-
store volume.

C. Inter-Procedural Analysis

The previous stage analyzed individual functions to de-
termine internal data flow, variable use and all constituent



DATAFLOW ANALYSIS

CALL FUNCTION f1()

CALL FUNCTION f3()

DATAFLOW ANALYSIS

CALL FUNCTION f2() DATAFLOW ANALYSIS

fo ()

f1()

f2()

Data transfer

Data transfer

DATAFLOW ANALYSIS

Data transfer f3()

Fig. 2. Overview of Inter-Procedural Analysis

function calls. During inter-procedural analysis, the interplay
between these program elements is determined through the
exploration of the context sensitive call graphs starting from
the topmost entry point, resulting in a deep call graph for each
concurrent task composed of the various functions that it calls
during its lifetime. The data flow and definitions within each
function of this call graph are analyzed to determine whether
operations as well as the function’s arguments reference local
or remote data. In the latter case, each variable is iteratively
tracked to its source, i.e. a shared global datum with poten-
tially multiple remote definitions, and logged in the function’s
variable database. The analysis continues into each constituent
function within the call graph after the entry point as illustrated
in Figure 2. Note that for every call encountered after the
entry point, the calling context from the caller is retrieved and
transferred to the data flow analysis of the callee function. The
variable database obtained for each constituent function f1(),
f2() and f3() in Figure 2 is aggregated and thus considered to
be part of f0() since concurrent instances of f0() may become
inter-dependent through these functions. This property of Cit
can also be used to evaluate thread safety of functions in
parallel environments.

Dependencies between concurrent tasks are finally estab-
lished by a comparison of their aggregate variable databases.
Therefore, the set of dependencies D between any two tasks
Ti and Tj is:

D = DTi ∩DTj (1)

where DTi and DTj represent the aggregate variable databases
of concurrent tasks Ti and Tj respectively. Note that D = ∅
for non-disjoint reads.

D. Characterization

A novel feature of Cit is its characterization of data
dependencies according to the program control flow as AC
or MC. In this final stage, the program is characterized to
determine the nature of data dependencies, and estimate the
volume of load-stores within each concurrent task.

1) Dependency Characterization: At the end of inter-
procedural analysis, the dependency relationships between
functions as well as the internal control flow within each
are known. Together, the two enable characterization of inter-
procedural dependencies according to the likelihood of their
occurring at runtime and thus causing a conflict. Dependencies
are categorized based upon their location within the control
flow, and the nature of the reference that they result from.
Consequently, they may be of two types: Always Conflict (AC)
and May Conflict (MC).

The first type results from data dependencies that arise due
to static references, i.e. direct or indirect with constant/input in-
dependent offsets. Concurrent execution of multiple instances

of a function containing such a dependency will always conflict
in their accesses to the contentious shared datum. On the
other hand, the presence of conditional branches in the control
path may result in the shared access not occurring at all.
In this case, the dependency is categorized as MC. The
latter type is also inferred for dependencies within loops with
input dependent bounds, as well as for statements with input
dependent operations. Indirect references that utilize constant
constant offsets are categorized as AC in absence of the above
mentioned conditional branch or loop conditions, while those
with dynamic or input dependent offsets are categorized as
type MC and are referred to as dynamic dependencies.

Thus dependencies are of type:

• AC for static references without any input dependence,
or conditional branches and input dependent loops

• MC for all references preceeded by a conditional
branch, or within a loop with input-dependent bounds,
and for indirect references with dynamic offsets

2) Load-Store Estimation: Lazy versioned TM systems
typically isolate speculative writes until they are determined
as disjoint, or as legal writes in the case of contention. It is
thus critical for the volume of such writes to remain within
the capacity of the write-buffer in order to avoid performance
degrading overflows. Data set size estimates at compile-time
enable such an evaluation, and in conjunction with dependency
information, provide a suitable basis for program optimizations
to improve execution performance. Load-store volumes for
each concurrent task are computed in the same manner as dur-
ing Intra-Procedural Analysis, using its internal control flow,
call graph, and individual volumes for each callee function.
Loops with input dependent bounds however present a source
of inaccuracy to Cit’s load-store estimates, in which case the
data set size is computed considering only a single iteration
of the corresponding loop section. We expect to overcome this
limitation in subsequent versions of the plugin.

3) Performance Pathologies: Apart from write-buffer over-
flows, a number of other performance pathologies and po-
tential pitfalls may exist within the program, often without
any perceivable effect in the common case. However, these
may form significant performance bottlenecks under specific
circumstances.

• Dependencies within loops: TM systems using opti-
mistic conflict detection delay the detection of data
dependencies until the end of the transaction’s exe-
cution. In the case of transactions that execute long
running loops with dependencies within the first few
iterations, this policy causes execution to continue
needlessly. Such dependencies may therefore present
a performance bottleneck, and result in wasted work.

• Recursive functions: Recursive functions that contain
inter-procedural dependencies may result in infinite
call sequences if incorrectly used. Furthermore, such
sequences can potentially cause write-buffer and stack
overflows in the system. From a debugging perspec-
tive, this information is useful in locating instances of
unplanned recursion.

• Memory management functions: Dynamic memory
allocation within parallel tasks with a monolithic heap



allocator can also act as a performance bottleneck,
with each task waiting on the heap lock.

The presence of these pathologies is determined using the
control flow and inter-procedural data dependency graphs, and
is reported as part of Cit’s characterization reports.

IV. IMPLEMENTATION IN GCC

Cit is implemented as a plugin for GCC-4.5 [7], allow-
ing code under compilation to be analyzed and manipulated
without modifying the compiler. During compilation, high-
level program code is converted into the GIMPLE internal
representation which is used by GCC’s optimization passes [8].
This internal representation is a simplified form of the program
code, with complex expressions reduced into a sequences of
GIMPLE tuples that indicate the expression type, operations
and the appropriate operands. Function calling contexts, vari-
able declarations and program constructs such as branches
are trivial to obtain from the GIMPLE representation, and
their analysis is simplified by a wide range of internal macros
within GCC. Although the entire analysis is performed at the
granularity of basic blocks, the code section that is primarily
targeted for dependency analysis may be selected by specifying
the unit’s name as an argument. At the start of the GIMPLE
pass, the complete internal representation of the compilation
unit is dumped by Cit into intermediate files for analysis.
GIMPLE statements are processed using the FOR EACH BB
iterators, with function at a time granularity. A subsequent
run through the statements yields an inter-procedural call
graph, allowing the control flows from the first analysis to
be expanded in place. Finally, data flow analysis is used
to determine data dependencies between concurrent tasks as
previously explained.

An overview of the compilation process highlighting the
placement of Cit is shown in Figure 3. Cit is instantiated
between GCC’s Visibility and Static Single Assignment (SSA)
optimization passes. At the end of the visibility pass, the
application code is trimmed of unreachable functions and
statements. Further, at that point in the compilation, the
representation has far fewer temporaries than the SSA form,
thus reducing both the runtime as well as the complexity
of the dependency analysis without reducing Cit’s coverage.
Since inter-procedural optimization are typically performed
only after the GIMPLE pass, the placement of the plugin at this
point presents an opportunity for optimizations to be driven by
the results of Cit’s analysis.

The plugin produces text files with characterization reports
for the analyzed code, listing dependencies between functions
together with the line numbers in the source code at which
they exist, allowing programmers to verify their code with
relative ease. A DOT graph description language representation
of control flow, call and data dependency graphs is also
produced alongside the plain text reports. These may be used
in conjunction to identify independent sections of code that
contain exploitable parallelism. The runtime of the Cit plugin
ranges from a few seconds to a few minutes depending on
the size of the code under compilation. A limitation of our
implementation is that the analysis requires application code to
be included into a single file, allowing its analysis as a single
compilation unit. However, conversion of a multiple source

Fig. 3. Compilation flow illustrating the placement of Cit’s analysis passes

program into such a single unit is simple to perform using the
Merge Program feature of the CIL framework [9].

V. EXPERIMENTAL EVALUATION

A custom transactional test application incorporating six
micro-kernels was used to validate Cit, since its dependency
graph and characteristics were both known a priori. The micro-
kernels included data dependencies in the form of global
variables, function parameters passed by reference, pointers to
dynamically allocated memory. The application’s concurrent
tasks 1 through 4 are loop-based code sections that perform
read-modify operations on individual variables, array elements
and structures that are potentially shared, from within trans-
actions. Tasks 5 and 6 represent node generation and key
modification functions for a linked list. The a priori data
dependency graph for the test application is presented in Figure
4.

The application was compiled with the Cit plugin enabled,
and the obtained data dependency graph with respect to task
1 is shown in Figure 5. This graph is observed to match the
a priori dependency graph in both location as well as type of
data dependencies. However, the graph indicates an additional
dependency in the program due to concurrent accesses to an
array by tasks 1 and 4. These accesses are in fact disjoint,
but since they are performed as indirect references using the
loop variable, their address offsets are ignored, thus yielding a
basic dependency relationship considering the base of the array
alone. However, this dependency is marked as MC since it may
not actually result in a conflict if the concerned references
are disjoint, i.e. the loop variables have different initialization
values. The first column in Table I lists the characterization
report for the test application. The dynamic dependencies as
a result of indirect references by tasks 5 and 6 are marked as
MC in the report. Included as meta-data, this information could

Fig. 4. Data dependencies within the custom test application



TABLE I. CHARACTERIZATION REPORTS FOR ANALYZED WORKLOADS

TEST+ KMEANS BAYES NB-LL
Analyzed concurrent task all work learnStructure createTasklist user
Static Dependencies 6 2 5 2 0
- Always Conflicting (AC) 5 0 1 0 0
- Within loop (MC) 1 2 5 2 0
- Within conditional branch (MC) 0 2 4 2 0
Dynamic Dependencies (MC) 2 1 0 0 2
Worst-case load-store count 32 78 2870 1122 140
Recursion No No Yes No No
Mem. Management Functions Yes No Yes No Yes

+This characterization report aggregates all concurrent tasks in the application.

aid in pinpointing tasks whose transactions require validation,
and those that can benefit from simple data forwarding. The
load-store estimates for the application considering a single-
iteration of all its constituent loops, was found to be accurate
from the GCC output assembly listing.

The plugin was subsequently used to analyze the kmeans
and bayes workloads from the STAMP benchmark suite [10],
and the results were verified against those from literature [1].
In addition, a non-blocking linked list implementation [11]
was also analyzed. These analyses explored concurrent tasks
within each workload, tracing their dependency types and
relationships, as well as their load-store characteristics and
performance pathologies. The characterization reports for these
applications are also listed in Table I. The kmeans workload
groups objects in an N-dimensional space into K clusters.
Updates to cluster centers are performed iteratively, and are
protected by a transaction. Parallelized execution of kmeans
consists of multiple threads concurrently executing the work
function that performs this operation. The structure containing
cluster centers is shared between these threads. Mannarswamy
et al. in their analysis of kmeans [1], resolved the update
operation as an AC dependency, inferring that accesses to the
shared data structure are always non-disjoint. However, Cit’s
characterization reports indicate this dependency to be of the
type MC. This is due to:

1) The location of the dependency within a conditional
branch nested inside an input dependent loop sec-
tion. This may influence the range of cluster centers
modified by the operation, and thus the occurrence
of conflicts between the concurrent threads.

2) The dependence of the cluster selection on the argu-
ments to the work function. Therefore, based on the
input, concurrently executing threads may update dis-
joint cluster centers. The dependency, consequently,
is dynamic.

Describing the dependency as always conflicting is pes-
Thread #0 Approx. Data written =12 Bytes

task1

callee1

0

task2

task4

task5

1

task3

task6

Fig. 5. Call graph for task1 overlayed with data dependency information for
the test application

BB_14
load_store 4
Reg op 1
Level= 0

startline= 878
endline= 882

N

BB_10
load_store 0
Reg op 1
Level= 0

startline= 835
endline= 835

Header

N

BB_4
load_store 4
Reg op 6
Level= 1

startline= 837
endline= 845

T

BB_11
load_store 1
Reg op 1
Level= 0

startline= 867
endline= 867

N

BB_5
load_store 1
Reg op 0
Level= 1

startline= 846
endline= 846

T

BB_6
load_store 10
Reg op 11
Level= 0

startline= 851
endline= 857

F

N

BB_8
load_store 0
Reg op 1
Level= 0

startline= 857
endline= 857

Header

N

N

BB_12
load_store 4
Reg op 0
Level= 1

startline= 869
endline= 870

Latch

T F

N

1

N

Fig. 6. Control flow graph of the kmeans work function highlighting a shared
write under a conditional branch. An extract of the variable database is shown
in the table below the control flow graph.

simistic, since the likelihood of two threads simultaneously
attempting to update the same cluster center is low. This
observation is further supported by [10], thus indicating that
conflicts between kmeans threads are not guaranteed to always
conflict. There also exist static MC dependencies that involve
direct references to shared variables global i and global delta,
protected by small read-modify-write transactions. Stores to
global i are seen to be preceeded by a conditional branch in
Figure 6, indicating that potential conflicts are predicated on
the outcome of that branch. In this case however, the impact
of such conflicts can be expected to be low considering the
size of the transactions involved. An overview of the analyzed
kmeans workload is shown in Figure 7, with both call and
data-dependency information. Functions such as work executed
concurrently by multiple threads may conflict on account of
potentially non-disjoint accesses. This is indicated by means
of a dependency relationship originating and terminating at
the same function. The bayes workload on the other hand
exhibits more complex characteristics. It implements a learning
algorithm that detects dependencies between variables in a
Bayesian network, progressively expanding it by adding sub-
graphs of dependent variables. The likelihood of each de-
pendency is recursively computed and tracked by an ADTree
structure. Bayes uses multiple threads of execution to speed up
the learning algorithm. Each thread computes dependencies for
variables, and attempts to update the shared network structure
through a transactional operation. There are two primary



thread_barrier_wait

thread_barrier

thread_getNumThread

thread_shutdown

thread_startup

threadWait

thread_barrier_free

thread_barrier_alloc thread_barrier_init

thread_getId

thread_start random_generate

genrand_int32

init_genrand

random_seed

Prandom_alloc random_alloc

normal_exec

work main

common_findNearestPoint atof atoiusage

common_euclidDist2

genrand_res53 genrand_real3genrand_real2 genrand_real1 genrand_int31

init_by_array

cluster_exec

zscoreTransformrandom_free

extractMoments

Fig. 7. Call-graph overlayed with data dependencies for the kmeans workload. The work function here is a concurrent task, and bears dependencies only with
it’s parent (normal exec) and its own concurrent instances.

threads within bayes: createTasklist and learnStructure. The
former uses transactions to read and update the likelihood of
a dependency for each variable, and subsequently determine
the next task to analyze. The learnStructure thread in turn
reads from the shared task list, and determines the operation
to perform on the network. This is implemented in the code
as a switch statement with cases determining whether edges
are to be inserted or removed from the network.

Cit’s analysis reports reflect the effect of this operation on
learnStructure’s dependencies, which are consequently clas-
sified as type MC. In the case of concurrent execution of
multiple threads of this function, each may attempt to perform
a different operation on the same node of the network, and
thus cause a conflict. learnStructure is also observed to be
dependent on createTasklist through the taskPtr data structure
that is populated by the latter. In general, the presence of
a large number of dependencies (as compared to kmeans),
as well as the interdependence of threads of both functions
are indicators of the high contention inherent in the bayes
workload.

Load-store estimates in the characterization reports illus-
trate the data-set size for threads in each workload. kmeans
for instance is observed to have a significantly smaller data-
set per iteration than both bayes threads. The number and
nature of loops and branches present within each thread further
provide an indication of runtime. In the case of learnStructure,
Cit reported an unconditional loop containing transactions
that perform operations on the network, thus indicating a
potentially long runtime. The characterization reports therefore
reflect the following design characteristics of the kmeans and
bayes workloads [10]:

• kmeans: Small data-set, low contention, short runtime
(no recursion)

• bayes: Large data-set, high contention, long runtime
(recursion)

An non-blocking linked list benchmark (NB-LL) was also
analyzed using the Cit plugin. The user function within this
workload performs insertion and deletion operations on a
single list using memory management functions. The two
dynamic dependencies associated with the indirect references
to the linked list during insertion and deletion are correctly
identified by Cit’s analysis passes. The characterization report
for NB-LL is listed in Table I.

VI. CONCLUSION

In this paper, we presented Cit, a GCC plugin for compile-
time analysis and characterization of data dependencies within
parallel programs. In addition to accurately determining data

dependencies within standard benchmark applications, Cit also
correctly classified these as either Always Conflict (AC) or
May Conflict (MC) based on the likelihood of them resulting
in a conflicting memory access. This was highlighted in the
case of the kmeans workload from the STAMP benchmark
suite, in which a critical dependency known from literature to
be of type AC, was correctly identified by Cit as type MC
instead. This observation was supported by the application’s
known design characteristics, as well as its execution behavior.
Cit’s features make it a powerful tool for fast analysis and
visualization of parallel programs, providing programmers
with the critical feedback they need to optimize code, improve
execution performance and explore potential parallelism in
their applications.

VII. ACKNOWLEDGEMENTS

This work was supported in part by the CATRENE pro-
gramme under the Computing Fabric for High Performance
Applications (COBRA) project (CA104).

REFERENCES

[1] S. Mannarswamy and R. Govindarajan, “Handling conflicts with com-
piler’s help in software transactional memory systems,” in Proceedings
of the 39th International Conference on Parallel Processing, 2010, pp.
482 –491.

[2] M. Herlihy and J. Moss, “Transactional memory: Architectural support
for lock-free data structures,” in Proceedings of the 20th annual
International Symposium on Computer Architecture, 1993, pp. 289–300.

[3] K.-F. Faxen et al., “Embla - data dependence profiling for parallel
programming,” in Proceedings of the International Conference on
Complex, Intelligent and Software Intensive Systems, 2008, pp. 780–
785.

[4] S. A. Ostadzadeh et al., “Quad: a memory access pattern analyser,”
in Proceedings of the 6th international conference on Reconfigurable
Computing: architectures, Tools and Applications, 2010, pp. 269–281.

[5] M. J. Best et al., “Synchronization via scheduling: techniques for
efficiently managing shared state,” in Proceedings of the Conference on
Programming Language Design and Implementation, 2011, pp. 640–
652.

[6] S. Mannarswamy, D. R. Chakrabarti, K. Rajan, and S. Saraswati, “Com-
piler aided selective lock assignment for improving the performance of
software transactional memory,” in Proceedings of the ACM Symposium
on Principles and Practice of Parallel Programming, 2010, pp. 37–46.

[7] “Gnu compiler collection (gcc) 4.5.” [Online]. Available:
http://gcc.gnu.org/gcc-4.5/

[8] J. Merrill, “Generic and gimple: A new tree representation for entire
functions,” in Proceedings of the GCC Developers Summit, 2003, pp.
171–180.

[9] G. C. Necula et al., “Cil: Intermediate language and tools for analysis
and transformation of c programs,” in Proceedings of the International
Conference on Compiler Construction, 2002, pp. 213–228.

[10] C. Cao Minh et al., “Stamp: Stanford transactional applications for
multi-processing,” in Proceedings of the IEEE International Symposium
on Workload Characterization, 2008, pp. 35 –46.

[11] T. L. Harris, “A pragmatic implementation of non-blocking linked-lists,”
in Proceedings of the 15th International Conference on Distributed
Computing, 2001, pp. 300–314.


