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Abstract—In this paper, we perceptually evaluate two re-
cently proposed binaural multi-microphone speech enhancement
methods in terms of intelligibility improvement and binaural-
cue preservation. We compare these two methods with the
well-known binaural minimum variance distortionless response
(BMVDR) method. More specifically, we measure the 50% speech
reception threshold, and the localization error of all dominant
point sources in three different acoustic scenes. The listening tests
are divided into a parameter selection phase and a testing phase.
The parameter selection phase is used to select the algorithms’
parameters based on one acoustic scene. In the testing phase,
the two methods are evaluated in two other acoustic scenes
in order to examine their robustness. Both methods achieve
significantly better intelligiblity compared to the unprocessed
scene, and slightly worse intelligibility than the BMVDR method.
However, unlike the BMVDR method which severely distorts
the binaural cues of all interferers, the new methods achieve
localization errors which are not significantly different compared
to those of the unprocessed scene.

Index Terms—Binaural beamforming, binaural cues, intelligi-
bility, localization.

I. INTRODUCTION

Binaural hearing-aid (HA) systems [1] consist of two
wirelessly connected and collaborative HA devices with at
least one microphone per device. In contrast, bilateral HA
systems [2], [3] consist of independently working HAs. The
binaural HAs can typically use a larger microphone array than
bilateral HAs and, therefore, have more degrees of freedom for
the beamformer. These degrees of freedom might be used to
obtain a better noise reduction, or, to preserve the binaural
cues of sound sources in the acoustic scene [3].

An important component in a binaural HA system is the bin-
aural multi-microphone speech enhancement algorithm, which
aims to enhance the intelligibility of the target speech signal,
while at the same time to preserve the binaural cues of the
acoustic scene after processing [3]. Typically, binaural multi-
microphone speech enhancement methods show a trade-off be-
tween noise reduction and binaural-cue preservation. Existing
binaural multi-microphone speech enhancement methods can
be roughly categorized into two main groups: the spatial fil-
tering methods (e.g., [4]–[8]) and the spatio-temporal filtering
methods (e.g., [9]–[16]). The latter group typically provides a
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larger amount of noise reduction than spatial filtering methods,
at the expense of target distortions at the output of the filter.

Only a few studies exist (e.g., [2], [15], [17], [18]) that
evaluate the perceptual performance (such as intelligibility
and localization) of binaural speech enhancement methods. In
contrast, most studies evaluate performance using instrumental
measures, e.g., predicting intelligibility (e.g., by means of
STOI [19] or DBSTOI [20]) or localization accuracy (e.g.,
by means of interaural level and time differences errors [13],
or other measures such as the ones presented in [21], [22]).
Although these measures correlate well with localization and
intelligibility, not all aspects of localization and intelligibility
are well understood or incorporated in these measures. To un-
derstand the real trade-off between intelligibility improvement
and localization accuracy, listening tests are still required.

In this paper, we evaluate two methods recently proposed
in [8] and [16] by means of an intelligibility test and a
localization test, and compare them with the binaural minimum
variance distortionless (BMVDR) method [3]. In addition,
we compare with an oracle based method [18], to get an
idea of the intelligibility and perceived localization if perfect
knowledge would be available. The BMVDR method provides
the maximum noise reduction among all linear spatial filters,
while severely distorting the binaural cues of all interferers [3].
We report the intelligibility and localization scores of self-
reported normal-hearing people in several acoustic scenes.

The spatio-temporal filtering method proposed in [16] pre-
serves the binaural cues by a binary classification of all
frequency bins into target or noise-dominant bins. The classi-
fication is based on the output SNR that results by applying
the BMVDR to all frequency bins. The target-dominant time-
frequency bins are processed with the BMVDR, while the
noise-dominant time-frequency bins are replaced with a scaled
version of the corresponding unprocessed time-frequency bins.

The spatial filtering method proposed in [8] uses additional
inequality constraints in the BMVDR optimization problem to
preserve the binaural cues of all interferes. The inequality con-
straints are functions of anechoic pre-determined head-related
transfer functions (HRTFs), which are considered as known
and are acoustic-scene-independent, but user-dependent [8].

Section II reviews the binaural speech enhancement meth-
ods that we evaluate. Section III shows the evaluation proce-



dure and its results. Section IV gives concluding remarks.

II. OVERVIEW OF THE EVALUATED METHODS

In this section, we briefly review the binaural speech en-
hancement methods that we evaluate in this paper. For more
details, the reader is referred to the associated papers.

A. BMVDR

The BMVDR spatial filter [3] provides the maximum noise
reduction compared to all the other spatial filters. It preserves
the binaural cues of the target, but distorts the binaural
cues of all other sound sources, and makes them identical
to the target’s binaural cues. The BMVDR consists of two
MVDR spatial filters [23] sharing the same microphone array,
but using two different reference microphones, one on each
HA. The two optimization problems, associated with the two
MVDR spatial filters, minimize the total output noise power
under the constraints that the target signal is preserved without
any distortion at the two reference microphones. As such the
binaural cues of the target signal are preserved, but the binaural
cues of the interferers are not, since there are no constraints
for them in the optimization problems.

B. Relaxed Binaural LCMV with Pre-determined HRTFs

The relaxed binaural linearly constrained minimum variance
(LCMV) with pre-determined HRTFs is a spatial filtering
method introduced in [7], [8]. This method uses additional
inequality constraints in the BMVDR optimization problem
to preserve the binaural cues of pre-selected azimuths and/or
elevations around the head [8]. The inequality constraints can
be relaxed as desired using a relaxation parameter, 0 ≤ c ≤ 1.
The maximum amount of relaxation (i.e., c = 1) results in the
BMVDR filter as a special case. The trade-off between noise
suppression and binaural-cue preservation of this method de-
pends not only on c, but also on the number of pre-determined
HRTFs. In this paper, we only vary the c-value and not the
number and locations of the pre-determined HRTFs. More
specifically, we always use anechoic pre-determined HRTFs
(from the database in [24]) associated with 24 uniformly
spaced locations in the horizontal plane on a circle around
the head with a distance of 3 m from the center of the head.

C. BMVDR with Thresholding

The BMVDR with thresholding method is a spatio-temporal
filtering method introduced in [16]. First, the BMVDR filter is
applied to all time-frequency bins and, next, the output narrow-
band SNR, of all these enhanced time-frequency bins, is
estimated. A time-frequency bin is considered target-dominant,
if the output SNR of a time-frequency bin is above a certain
threshold τ . Otherwise, the time-frequency bin is considered
as noise-dominant. The noise-dominant time-frequency bins
are suppressed identically, so that the interaural time and
level differences are not changed in order to preserve the
binaural cues of the noise. In particular, if the residual noise is
inaudible after applying the BMVDR method, its binaural cues
need not be preserved and, therefore, maximum possible noise

suppression is achieved. If the noise in some time-frequency
bins dominates the target after processing, the BMVDR output
is not beneficial and, thus, the BMVDR output is replaced by
a scaled-down version of the unprocessed scene to suppress
the interferers and preserve the binaural cues of the acoustic
scene. Since this scaling reduces both the target and noise
components, the target signal will be distorted.

D. Ideal Binaural Target Enhancement

This is an oracle-based method that consists of the unpro-
cessed acoustic scene with an SNR equal to the SNR output
of the BMVDR method [18]. This method achieves the same
amount of noise suppression as the BMVDR while perfectly
preserving the binaural cues of the complete acoustic scene.

III. EXPERIMENTS

To evaluate the methods presented in Section II, we con-
ducted an intelligibility test, which measures the 50% speech
reception threshold (SRT), and a localization test, which
measures the binaural localization error of the dominant point
sources in the acoustic scene. Both tests are divided into two
different phases; a parameter selection phase and a testing
phase. The acoustic scenes in the testing phase are different
from the one in the parameter selection phase. This is done
to examine the robustness in different acoustic scenes with
respect to the chosen parameter settings. The main purpose
of the parameter selection phase is to obtain the c and τ
parameters for the relaxed binaural LCMV and the BMVDR
with thresholding methods, respectively, to be used in the
testing phase. The testing phase examines the performance of
all methods in the remaining two acoustic scenes.

We used Beyerdynamic DT 990 PRO 250 OHM headphones
for the listening tests. The average sound level of the total
noise that was played via the headphones was fixed to 65 dB
SPL and the target level was varied to achieve a certain SNR.

For convenience, we use the following acronyms for the
compared methods in the following figures and tables: relaxed
binaural LCMV (RBLCMV(c)), binaural MVDR (BMVDR),
BMVDR with thresholding (BMVDR (τ )), ideal binaural
target enhancement (IBTE), and unprocessed scene (UNPR).

A. Generation of Audio Signal Database

For both listening tests we created a database of unprocessed
and processed 2-channel binaural signals with SNRs ranging
from −28 dB to 10 dB. The unprocessed HA signals were
computed using the behind-the-ear impulse response database
in [24]. For the multi-microphone binaural speech enhance-
ment methods we used the front and middle microphones from
each HA to create an array of 4 microphones. After processing,
we saved the 2-channel binaural output signals corresponding
to the reference microphones.

We used as the target signal randomly selected Dutch-
spoken sentences with a duration of about 2 s from a female
talker, taken from the database in [25]. We padded these
sentences at the beginning and at the end with extra zeros
such that a length of 4 s was obtained and the spoken sentence



TABLE I
SUMMARY OF ACOUSTIC SCENES.

acoustic
scene

point source position (degrees) diffuse
noise

recording
environment

mic.
noise

female talker male talker music

AC1 0 -30 90
cafeteria

noise cafeteria yes

AC2 -30 90 -90
cafeteria

noise cafeteria yes

AC3 0 -45 60 − office yes

was exactly temporally centered within the masking noise as
shown in Fig. 1. This was done in order to avoid confusion
of the listener due to simultaneous initiation of all sources.

We used four different noise types to simulate the acous-
tic scenes: a music signal, a randomly selected English-
spoken sentence from a male talker taken from the TIMIT
database [26], a diffuse cafeteria noise taken from the database
in [24], and microphone-self noise. We also used three differ-
ent acoustic scenes, which we denote as AC1, AC2 and AC3.
Table I summarizes the acoustical sources and their locations
in all acoustic scenes. Note that AC1 was used for parameter
selection, while AC2 and AC3 were used for the testing phase.

The female and male talkers’ signals were zero-padded to
have an equal length of 4 s. For the music sound source, a
4 s fragment was extracted randomly per sentence from an
approximately 5 minutes long music piece. All three noise
contributions were set to have equal average power at the
two reference microphones, making all disturbances equally
important in the acoustic scene. The input SNR, defined
as the target power with respect to the total noise power,
was computed by concatenating the left and right reference
microphone recordings of the target and the noise signals. The
sampling frequency of all signals was set to 16 kHz.

B. Subjects

In the parameter selection phase, we used 5 native speakers
of Dutch for the intelligibility test, and 5 non-native speakers
of Dutch for the localization test. In the testing phase, we
used 14 native speakers of Dutch for the intelligibility test,
and 15 non-native speakers of Dutch for the localization test.
All subjects from the parameter selection phase participated
in the testing phase as well. All subjects were self-reported as
normal-hearing and their age range was 20-36 years.

C. Intelligibility Test

The target sentences (not necessarily meaningful) were part
of a matrix test consisting of 5 words each, with the cor-
rect grammatical structure name, verb, number, adjective and
noun. The sentences and the noise realizations were randomly
selected from the database. Using a graphical user interface
(GUI), the listeners had access to a 10 × 5 matrix with each
column consisting of the 10 candidate words used to construct
the sentences. The sentences were played only once to the

female talker
male talker

music & background

Fig. 1. Time duration of each source signal. The background signal is a
cafeteria background noise and is present only in AC1 and AC2.

subjects, after which they had to select from each column
the word that was understood. We used the one-down-one-
up adaptive staircase method [27] to find the SRT-50 scores
(i.e., the SNR at which the subject scored 50% correct) for
each method and subject. The adaptive track started with an
initial SNR of 10 dB and an initial step-size of 8 dB. For
each new reversal the step-size was halved until it became
1 dB. After this, the procedure continued until 8 more reversals
were completed. Finally, the median of the last 8 reversals was
computed as the SRT-50 score of every subject. Every subject
had a 2-3 minutes training session before the official test, to get
familiar with the GUI. Per subject, the SRT-50 was computed
once for each algorithm.

D. Localization Test

In order to perform the localization test, we implemented
the GUI as depicted in Fig. 2. There is a question on the top
of the screen which asks the subject to identify the perceived
direction of a specific source. The subjects were asked to
listen to the algorithms by pressing the buttons on the right-
hand side as many times they wanted and then identified the
angle by pressing one of the circles on the image. There are 6
buttons in total on the right-hand side (for the testing phase)
as shown in Fig. 2, because there are five competing methods
and one reference signal, which is the point source in question
in isolation. For the testing phase, the user pressed the ’next
experiment’ button 3 × 2 × 2 = 12 times (i.e., there are 12
pages in total) to find the azimuths of all the point sources (3 in
total) in the acoustic scenes AC2 and AC3 for two repetitions.

The algorithms were presented in a random order and in
the testing phase the acoustic scenes were also presented in
random order between different pages and within the same
page. Moreover, the input signals to all presented algorithms
had an overall SNR of −5 dB, in order to clearly hear all
dominant point sources after processing. Finally, the localiza-
tion errors were computed with respect to a reference signal
azimuth (and not the true azimuth of the source). This is
because, the HA signals were constructed using a single set of
HRTFs from [24], which are different than the HRTFs of the
subjects. Thus, the subjects will, typically, perceive binaural
cues differently from each other. Since the localization test is
to verify preservation of binaural cues, it is better to check
how close the binaural cues after processing are to those
before processing for each subject. Finally, since there are
two repetitions, we played each reference source signal twice
and calculated the average response on this as the reference
location. Finally, we averaged all localization errors across all
sources in the acoustic scene per algorithm.



Fig. 2. Graphical user interface of localization test.

-16 -15 -14 -13 -12 -11 -10
SRT-50 (dB)

10

20

30

40

lo
ca

li
za

ti
o
n
 e

rr
o
r

 (
d
eg

re
es

) 
  
  
  
 BMVDR

BMVDR(τ)

RBLCMV(c)

UNPR
c=0.9

c=0.7

τ=-8
τ=-4

c=0.1c=0.3

τ=4

τ=8τ=0

c=0.5

Fig. 3. Parameter selection phase: Trade-off between localization error
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E. Parameter Selection Phase Results

In the parameter selection phase, we compared all meth-
ods from Section II except for the ideal binaural target
enhancement method. The comparisons were made only for
scene AC1. For the relaxed binaural LCMV method, we
tested all values of the parameter c from the set c ∈
{0.1, 0.3, 0.5, 0.7, 0.9}, and for the BMVDR with threshold-
ing, we tested all values of the parameter τ from the set
τ ∈ {−8,−4, 0, 4, 8} dB. Fig. 3 shows the trade-off curves
of the two methods with the SRT-50 scores on the x-axis
and localization error on the y-axis, parameterized by the
tested τ and c parameter. For both the SRT-50 and the
localization error, the final score was calculated as the mean
across different subjects. The mean localization-error scores
were also computed across different sources and repetitions.

As expected (see Section II-B), as c increases, the relaxed
binaural LCMV method, in most cases, has an increased
localization error and an increased intelligibility. The BMVDR
thresholding method has a steady localization error for all
tested τ values, while it provides a large intelligibility im-
provement for small τ values. In Fig. 3, two reasonably good
parameter choices for the two methods are the ones with the
largest intelligibility improvement and as small localization er-
ror as possible, i.e., c=0.7 and τ=−8 dB. We used only these
two parameter choices for the testing phase (Section III-F).

F. Testing Phase Results

In the testing phase, we compared all methods from Sec-
tion II in scenes AC2 and AC3. Fig. 4 shows the median
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Fig. 4. Testing phase: SRT-50 (dB) statistics.
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Fig. 5. Testing phase: localization error (degrees) statistics.

and mean SRT-50, and the 0.25 and 0.75 quantiles. Fig. 5
shows the median and mean localization error, and the 0.25
and 0.75 quantiles. We also performed two t-tests to determine,
if the compared methods are significantly different in terms
of intelligibility improvement and localization error. The p-
values of the intelligibility t-test are given in Table II and III
for acoustic scenes AC2 and AC3, respectively. It is clear from
the p-values that the relaxed binaural LCMV (c=0.7) and the
BMVDR thresholding (τ =−8) are not significantly different
from each other. The intelligibility of both proposed methods
is significantly better compared to the unprocessed scene and
significantly worse compared to the BMVDR. The p-values
of the localization t-test are given in Table IV and V for
acoustic scenes AC2 and AC3, respectively. In both scenes,
the proposed methods have a significantly better localization
than BMVDR. Moreover, in scene AC2, the two proposed
methods are not significantly different from the ideal target
enhancement and for scene AC3 the BMVDR (τ = −8)
is not significantly different from the ideal binaural target
enhancement or the unprocessed noisy scene. This means that
the proposed methods indeed preserve the correct locations
of the sources in most cases, while significantly improve the
intelligibility with respect to the unprocessed scene.

IV. CONCLUSION

In this paper, we perceptually evaluated two recently pro-
posed binaural speech enhancement methods in terms of in-
telligibility improvement and localization error. Both methods



TABLE II
T-TEST P-VALUES FOR INTELLIGIBILITY TEST IN AC2.

Method BMVDR IBTE BMVDR
(τ = −8)

RBLCMV
(c = 0.7) UNPR

BMVDR (τ = −8) 0.0149 0 1 0.9177 0

RBLCMV (c = 0.7) 0.0401 0 0.9177 1 0

TABLE III
T-TEST P-VALUES FOR INTELLIGIBILITY TEST IN AC3.

Method BMVDR IBTE BMVDR
(τ = −8)

RBLCMV
(c = 0.7) UNPR

BMVDR (τ = −8) 0.0259 0 1 1 0

RBLCMV (c = 0.7) 0.0105 0 1 1 0

TABLE IV
T-TEST P-VALUES FOR LOCALIZATION TEST IN AC2.

Method BMVDR IBTE BMVDR
(τ = −8)

RBLCMV
(c = 0.7) UNPR

BMVDR (τ = −8) 0 0.5645 1 0.3161 0.4153

RBLCMV (c = 0.7) 0 0.7800 0.3161 1 0.8673

TABLE V
T-TEST P-VALUES FOR LOCALIZATION TEST IN AC3.

Method BMVDR IBTE BMVDR
(τ = −8)

RBLCMV
(c = 0.7) UNPR

BMVDR (τ = −8) 0 0.0515 1 0.0272 0.2366

RBLCMV (c = 0.7) 0 0.0001 0.0272 1 0.0014

provide a significantly better trade-off between intelligibility
improvement and localization performance compared to the
unprocessed scene and the reference BMVDR method. More-
over, in most cases, the two methods are not significantly
different than the ideal binaural target enhancement method in
terms of localization error. Moreover, the difference between
the two methods is not statistically significant in most cases.
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