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We propose channel estimation and direct equalization techniques for transmission over doubly selective channels. The doubly se-
lective channel is approximated using the basis expansion model (BEM). Linear and decision feedback equalizers implemented by
time-varying finite impulse response (FIR) filters may then be used to equalize the doubly selective channel, where the time-varying
FIR filters are designed according to the BEM. In this sense, the equalizer BEM coefficients are obtained either based on channel
estimation or directly. The proposed channel estimation and direct equalization techniques range from pilot-symbol-assisted-
modulation- (PSAM-) based techniques to blind and semiblind techniques. In PSAM techniques, pilot symbols are utilized to
estimate the channel or directly obtain the equalizer coefficients. The training overhead can be completely eliminated by using
blind techniques or reduced by combining training-based techniques with blind techniques resulting in semiblind techniques.
Numerical results are conducted to verify the different proposed channel estimation and direct equalization techniques.
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1. INTRODUCTION

Over the last decade, the mobile wireless telecommunica-
tion industry has undergone tremendous changes and expe-
rienced rapid growth. The reason behind this growth is the
increasing demand for bandwidth hungry multimedia appli-
cations. This demand for even higher data rates at the user’s
terminal is expected to continue for the coming years as more
and more applications are emerging. Therefore, current cel-
lular systems have been designed to provide date rates that
range from a few megabits per second for stationary or low
mobility users to a few hundred kilobits per second for high
mobility users. In addition to the frequency-selectivity char-
acteristics caused by multipath propagation, the channel of-
ten exhibits time-variant characteristics caused by the user’s
mobility. This results in the so-called doubly selective (time-
and frequency-selective) channels.

In [1, 2], linear and decision feedback equalizers have
been developed for single carrier transmission over doubly
selective channels. There, the time-varying channel was ap-
proximated using the basis expansion model (BEM). The
BEM coefficients are then used to design the equalizer (lin-
ear or decision feedback). So far, it was assumed that the
BEM coefficients are perfectly known at the receiver, and

that they were obtained by a least-squares (LS) fitting to the
noiseless underlying communication channel (modeled us-
ing Jakes’ model). In other words, perfect channel state in-
formation (CSI) was assumed to be known at the receiver
side. This is, however, far from being realistic, since a more
realistic approach is to estimate the channel or directly ob-
tain the equalizer coefficients. This can be achieved by us-
ing training symbols, or blindly or semiblindly by combin-
ing training with blind techniques. In this paper we will fo-
cus on pilot-symbol-assisted-modulation- (PSAM-) based,
blind, and semiblind techniques for channel estimation and
direct equalization of rapidly time-varying channels.

PSAM techniques rely on time multiplexing data symbols
and known pilot symbols at known positions, which the re-
ceiver utilizes to either estimate the channel or obtain the
equalizer coefficients directly. In this context, we first derive
the optimal minimum mean-squared error (MMSE) inter-
polation filter. Then we derive the conventional BEM channel
estimation technique based on LS fitting. While the MMSE
interpolation filter requires the channel statistics, the latter
does not require a priori knowledge of the channel statis-
tics. It was shown in [3, 4] that the modeling error between
the true channel and the BEM channel model is quite large
for the case when the BEM period equals the time window.
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This case corresponds to a critical sampling of the Doppler
spectrum. Reducing this modeling error can be achieved by
setting the BEM period equal to a multiple of the time win-
dow [5]. In other words, we can reduce the modeling error
by oversampling the Doppler spectrum. In [6] the authors
treated the first case ignoring the modeling error. However,
when BEM oversampling is used, LS fitting of the BEM chan-
nel based on pilot symbols only is sensitive to noise. Here,
we show that robust-PSAM-based channel estimation can be
obtained by combining the optimal-MMSE-interpolation-
based channel estimation with the LS fitting of the BEM.
Although this can be applied to the critically sampled case
as well as to the oversampled case with oversampling fac-
tor greater than one, little gain is obtained for the critically
sampled case. In addition, we show that the channel esti-
mation step can be skipped and obtain the equalizer coef-
ficients directly based on the pilot symbols. This is referred
to as PSAM-based direct equalization.

The training overhead imposed on the system can be
completely eliminated by using blind techniques for chan-
nel estimation and direct equalization. Due to the poor per-
formance of blind techniques and their high implementa-
tion complexity, better performance and reduced complexity
semiblind techniques can be obtained. Semiblind techniques
are obtained by combining blind techniques with training.

For our blind techniques we focus on deterministic ap-
proaches. For time-invariant (TI) channels, a least-squares-
based deterministic channel estimation method is discussed
in [7], and deterministic mutually referenced equalization
is proposed in [8, 9]. Subspace-based methods have also
been proposed for channel identification/equalization for TI
channels [10–15]. For doubly selective channels, determinis-
tic blind identification/equalization techniques are proposed
in [16, 17], where for a zero-forcing (ZF) FIR solution to ex-
ist, the number of subchannels (receive antennas) is required
to be greater than the number of basis functions used for
BEM channel modeling. In [18, 19] blind techniques based
on linear prediction are proposed for doubly selective chan-
nels, where second-order statistics of the data are used. How-
ever, these techniques also require the number of receive an-
tennas to be greater than the number of basis functions of the
BEM channel. However, we propose an approach for which
the ZF solution already exists when only two subchannels
(receive antennas) are used.

This paper is organized as follows. In Section 2, the sys-
tem model is introduced. PSAM techniques are introduced
in Section 3. In Section 4, blind and semiblind techniques are
investigated. Simulation results are given in Section 5. Finally
our conclusions are drawn in Section 6.

Notations

We use upper (lower) bold face letters to denote matri-
ces (column vectors). Superscripts ∗, T , H , and † repre-
sent conjugate, transpose, Hermitian, and pseudo-inverse,
respectively. Continuous-time variables (discrete-time) are
denoted as x(·) (x[·]). E{·} denotes expectation. We denote
the N×N identity matrix as IN , the M×N all-zero matrix as

0M×N , and theM×N all-one matrix as 1M×N . Finally, diag{x}
denotes the diagonal matrix with vector x on its diagonal.

2. SYSTEM MODEL

We assume a single-input multiple-output (SIMO) system
with Nr receive antennas. Focusing on a baseband-equivalent
description, the transmitted signal consists of discrete sym-
bols that are pulse shaped with the transmit filter gtr(t) and
transmitted at a rate of 1/T symbols per second (the symbol
rate). Hence, the baseband transmitted signal can be written
as

x(t) =
∞∑

k=−∞
x[k]gtr(t − kT), (1)

where x[k] is the kth transmitted QAM symbol. The re-
ceived signal, on the other hand, is filtered with the receive
filter grec(t). Assuming the channel time-variation is negligi-
ble over the time span of the receive filter, the input-output
relationship can be written as

y(r)(t)

=
∞∑

k=−∞
x[k]

∫∫∞
−∞

g(r)(t; τ)gtr(t − kT − τ − s)grec(s)dsdτ

+ v(r)(t),
(2)

where g(r)(t; τ) is the doubly selective channel characterizing
the link between the transmitter and the rth receive antenna,
and v(r)(t) is the baseband equivalent additive noise at the rth
receive antenna. The received signal is then sampled at the
symbol rate 1/T .1 Defining y(r)[n] = y(r)(nT), the discrete-
time input-output relationship can be written as

y(r)[n] =
∞∑

k=−∞
x[k]

∫∫∞
−∞

g(r)(nT ; τ)

×gtr
(
(n− k)T − τ − s

)
grec(s)dsdτ

+ v(r)(nT)

=
∞∑

k=−∞
x[k]g(r)[n;n− k] + v(r)[n],

(3)

where g(r)[n;n − k] is the discrete-time impulse response of
the doubly selective channel characterizing the link between
the transmitter and the rth receive antenna, and v(r)[n] is the
discrete-time additive noise at the rth receive antenna.

1 Temporal oversampling is also possible here to obtain a SIMO system.
In this paper we consider the use of multiple receive antennas. Assuming
temporal oversampling, to some degree, is equivalent to using multiple
receive antennas, where the number of receive antennas is equal to the
temporal oversampling factor.
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For causal doubly selective channels of order L, the input-
output relationship (3) can be written as

y(r)[n] =
L∑
l=0

g(r)[n; l]x[n− l] + v(r)[n]. (4)

Basis expansion channel model

The mobile wireless channel can be characterized as a time-
varying multipath fading channel, where each resolvable
path consists of a superposition of a large number of inde-
pendent scatterers (rays) that arrive at the receiver almost
simultaneously. This is referred to as Jakes’ channel model
[20]. In this model the variation of each tap can be simulated
as

g(r)[n; l] =
QJ−1∑
µ=0

G(r)
l,µ e

j2π fmaxT cosφ(r)
l,µ n, (5)

where QJ is the number of scattering rays, G(r)
l,µ is the complex

gain, φ(r)
l,µ is the angle of arrival of the µth ray of the lth tap,

respectively, and fmax is the maximum Doppler spread. G(r)
l,µ

are independent identically distributed (i.i.d) complex Gaus-
sian random variables with zero mean and variance σ2

l /(2QJ)

per dimension, where σ2
l is the lth tap power, and φ(r)

l,µ are
i.i.d. random variables uniformly distributed over [0, 2π].
Note that the model in (5) implies the wide sense stationarity
(WSS), where the channel correlation function is invariant
over time.

The channel model in (5) has a rather complex struc-
ture due to the large (possibly infinite) number of parameters
to be identified, which complicates, if not prevents, the de-
velopment of low complexity equalizers. This motivates the
use of alternative models that have fewer parameters. This
is the motivation behind the basis expansion model (BEM)
[16, 21–23]. In this BEM, the time-varying channel g(r)[n; l]
over a window of N samples is expressed as a superposi-
tion of complex exponential basis functions with frequen-
cies on a discrete Fourier transform (DFT) grid. In other
words, the time-varying channel g(r)[n, l] is approximated
for n ∈ {0, . . . ,N − 1} by a BEM as

h(r)[n; l] =
Q/2∑

q=−Q/2
h(r)
q,l e

j2πqn/K , (6)

where (Q + 1) is the number of basis functions, and K
is the BEM period. Q and K should be chosen such that
Q/(2KT) is larger than the maximum Doppler frequency,

that is, Q/(2KT) ≥ fmax. Finally, h(r)
q,l is the coefficient of the

qth basis of the lth tap of the time-varying channel character-
izing the link between the transmitter and the rth receive an-
tenna, which is kept invariant over a period of NT , but may

change from block to block. The BEM coefficients h(r)
q,l may

be approximated as complex Gaussian random variables.

01�L 01�L 01�L 01�L

Training Data Training Data

Figure 1: Optimal training for doubly selective channels.

3. PSAM TECHNIQUES

3.1. PSAM channel estimation

For the sake of simplicity we assume the number of receive
antennas Nr = 1, that is, we assume a SISO system. This
is a valid assumption because we can decouple the SIMO
channel estimation problem into Nr parallel SISO channel
estimation problems. Using the time-domain training pro-
cedure proposed in [6, 24], the doubly selective channel of
order L can be viewed as L flat fading channels on the part
of the received sequence that corresponds to training. The
data/training multiplexing is shown in Figure 1, where the
training part consists of a training symbol surrounded by L
zeros on each side. Assuming we use P such training clusters
where the pilot symbols are located at positions n0, . . . ,nP−1,
the input-output relation on the pilot positions can be writ-
ten as

y[np,l] = g
[
np,l; l

]
x
[
np
]

+ v
[
np,l
]
, (7)

where np,l = np + l for l = 0, . . . ,L.
Define yt,l = [y[n0,l], . . . , y[nP−1,l]]T , Xt =

diag{[x[n0], . . . , x[nP−1]]T}, gt,l = [g[n0; l], . . . , g[nP−1; l]]T ,
and vt,l = [v[n0,l], . . . , v[nP−1,l]]T , the input-output relation
in (7) can now be written in vector form as

yt,l = Xtgt,l + vt,l . (8)

In this section, we first derive the optimal minimum
mean-squared error (MMSE) PSAM-based channel estima-
tion, which leads to the development of the optimal inter-
polation filter. However, since the BEM coefficients of the
time-varying channel are needed to design the equalizers
(linear and decision feedback), the PSAM-based estimation
of the BEM coefficients is also discussed and combined with
PSAM-based MMSE channel estimation to enhance the LS
fitting of the true channel and the estimated one.

3.1.1. MMSE channel estimation

From (8), an estimate of the lth tap of the time-varying chan-
nel ĝl = [ĝ[0; l], . . . , ĝ[N − 1; l]]T is obtained by applying a
P ×N interpolation matrix Wl as

ĝl = WH
l yt,l . (9)

Define the mean-squared error cost function J as

J
(

Wl
) = E

∥∥gl −WH
l yt,l

∥∥2
, (10)

where gl = [g[0; l], . . . , g[N − 1; l]]T is the channel state in-
formation at the lth tap.
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The MMSE interpolation matrix Wl is then obtained by
solving

min
Wl

J. (11)

Minimizing this cost function, we obtain [25]

WMMSE,l =
(

XtRp,lX∗
t + Rṽ

)−1
XtRg,l, (12)

where Rp,l is the lth tap channel correlation matrix on the
pilots given by

Rp,l

=

⎡
⎢⎢⎢⎢⎣

rg,l[0] rg,l
[
n0−n1

] · · · rg,l
[
n0−nP−1

]
rg,l
[
n1−n0

]
rg,l[0] · · · rg,l

[
n1−nP−1

]
...

. . .
...

rg,l
[
nP−1−n0

]
rg,l
[
nP−1−n1

] · · · rg,l[0]

⎤
⎥⎥⎥⎥⎦ ,

(13)

and Rg,l is given by

Rg,l =

⎡
⎢⎢⎢⎢⎣

rg,l
[
n0
]

rg,l
[
n0 − 1

] · · · rg,l
[
n0 −N + 1

]
rg,l
[
n1
]

rg,l
[
n1 − 1

] · · · rg,l
[
n1 −N + 1

]
...

. . .
...

rg,l
[
nP−1

]
rg,l
[
nP−1 − 1

] · · · rg,l
[
nP−1 −N + 1

]

⎤
⎥⎥⎥⎥⎦ ,

(14)

with rg,l[k] = E{g[n; l]g∗[n−k; l]}. Rṽ is the covariance ma-
trix of the channel estimation error at the pilot positions.
Both Rp,l and Rg,l are assumed to be known (assuming Jakes’
model, then it only requires the knowledge of the system
maximum Doppler shift fmax and the power delay profile).
Assuming i.i.d input symbols x[n], the training is of Kro-
necker delta form (i.e., x[np] = 1 ∀p = 0, . . . ,P − 1), and
white noise with normalized power β, then Rṽ = βIP . The
MMSE interpolation matrix on the lth tap WMMSE,l can now
be written as

WMMSE,l =
(

Rp,l + βIP
)−1

Rg,l . (15)

Note that for channels with uniform power delay profile, the
matrices RP,l, Rg,l, and WMMSE,l are identical and indepen-
dent of l, which means that they need to be computed once.

3.1.2. BEM channel estimation

For time-varying FIR equalization, where the time-varying
FIR equalizers are designed according to the BEM, the BEM
coefficients of the time-varying channel are then required
to design these equalizers. To this end, we define hl =
[h−Q/2,l, . . . ,hQ/2,l]T as the vector containing the BEM coeffi-
cients of the lth tap of the time-varying channel. In the ideal
case, where the time-varying channel gl is perfectly known at
the receiver, a LS fit of the BEM to the time-varying channel
model can be obtained by solving

min
hl

∥∥gl −Lhl

∥∥2
, (16)

where

L =

⎡
⎢⎢⎢⎢⎣

1 · · · 1
e− j2π(Q/2)(1/K) · · · e j2π(Q/2)(1/K)

...
...

e− j2π(Q/2)((N−1)/K) · · · e j2π(Q/2)((N−1)/K)

⎤
⎥⎥⎥⎥⎦ . (17)

The solution of (16) is given by

hl = L†gl . (18)

In practice, only a few pilot symbols are available for
channel estimation. From (8) the channel BEM coefficients
can be obtained by solving the following LS problem (assum-
ing that x[np] = 1, for p = 0, . . . ,P − 1)

min
hl

∥∥yt,l − L̃lhl

∥∥2
, (19)

where

L̃l =

⎡
⎢⎢⎣
e− j2π(Q/2)(n0,l /K) · · · e j2π(Q/2)(n0,l /K)

...
...

e− j2π(Q/2)(nP−1,l /K) · · · e j2π(Q/2)(nP−1,l /K)

⎤
⎥⎥⎦ . (20)

The solution of (19) is obtained by

hl = L̃
†
l yt,l . (21)

It has been shown in [6] that when critically sampling the
Doppler spectrum (K = N) and ignoring the modeling error,
the optimal training strategy consists of inserting equipow-
ered, equispaced pilot symbols. However, critically sampling
the Doppler spectrum results in an error floor due to the
large modeling error. On the other hand, oversampling the
Doppler spectrum (K = rN , with integer r > 1) reduces the
modeling error when the ideal case is considered [3, 26, 27],
that is, when (16) is applied. However, this channel estimate
is sensitive to noise when PSAM channel estimation is used.

A robust channel estimate can then be obtained by com-
bining the optimal-MMSE-interpolation-based channel es-
timate obtained in (9) with the BEM channel estimate ob-
tained in (16) as follows.

(i) First, obtain the channel estimate ĝl as in (9).
(ii) Second, obtain the LS solution of the following prob-

lem:

min
hl

∥∥ĝl −Lhl

∥∥2
. (22)

The solution of (22) can be obtained as

hl = L†ĝl, (23)

or equivalently in one step as

hl = L†WH
MMSE,lyt,l . (24)

Even though this applies to critically sampled Doppler
spectrum as well as to oversampled Doppler spectrum, little
gain is obtained when combining the MMSE-interpolation-
based channel estimate with the critically sampled BEM (K =
N), as will be clear in Section 5.
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3.2. PSAM direct equalization

In this section we propose a PSAM-based direct equaliza-
tion of doubly selective channels, where the time-varying
FIR equalizer coefficients are obtained directly without pass-
ing through the channel estimation step. Applying the time-
varying FIR equalizer w(r)[n; ν] to the rth receive antenna se-
quence y(r)[n], an estimate of x[n] (within a specific range as
indicated later on) can be obtained as

x̂[n− d] =
Nr∑
r=1

∞∑
ν=−∞

w(r)[n; ν]y(r)[n− ν], (25)

where d is the decision delay.
Using the BEM to design the time-varying FIR filters,

each time-varying FIR equalizer w(r)[n; ν] is designed to have
L′ + 1 taps. The time-variation of each tap is modeled by
Q′ + 1 complex exponential basis functions with frequencies
on some DFT grid not necessarily the same DFT grid as the
one for the channel. Therefore, the time-varying FIR filter
corresponding to the rth receive antenna can be written as

w(r)[n; ν] =
L′∑
l′=0

δ[ν− l′]
Q′/2∑

q′=−Q′/2
w(r)
q′,l′e

j2πq′n/K , (26)

where w(r)
q′,l′ is the BEM coefficient of the q′th basis of the

l′th tap of the equalizer, and K is the BEM resolution of the
equalizer. Substituting (26) in (25) we obtain

x̂[n− d] =
L′∑
l′=0

Q′/2∑
q′=−Q′/2

e j2πq
′n/Kw(r)

q′,l′ y
(r)[n− l′]. (27)

Define w(r) = [w(r)T
−Q′/2, . . . , w(r)T

Q′/2]T with w(r)
q′ = [w(r)

q′,0, . . . ,

w(r)
q′,L′]

T , then a block level formulation of (27) can be written
as

x̂T
∗ =

Nr∑
r=1

w(r)TY(r) = wTY, (28)

where x̂∗ = [x̂[L′ − d], . . . , x̂[N − d − 1]]T , w = [w(1)T , . . . ,
w(Nr )T]T , and Y = [Y(1)T , . . . , Y(Nr )T]T , with Y(r) a
(Q′ + 1)(L′ + 1) × (N − L′) matrix containing the time-
and frequency-shifts of the received sequence given by

Y(r) = [y(r)
−Q′/2,0, . . . , y(r)

−Q′/2,L′ , . . . , y(r)
Q′/2,L′ , . . . , y(r)

Q′/2,L′]
T . The

q′th frequency-shifted and l′th time-shifted version of the re-
ceived sequence on the rth receive antenna is given by

y(r)
q′,l′ = Dq′Zl′y(r), (29)

with Zl′ and Dq′ defined as

Zl′ =
[

0(N−L′)×(L′−l′), IN−L′ , 0(N−L′)×l′
]
,

Dq′ = diag
{[

1, . . . , e j2πq
′(N−L′−1)/K]T},

(30)

and y(r) = [y(r)[0], . . . , y(r)[N − 1]]T .

Assume that we have P pilot symbols collected in the vec-
tor xt = [x[n0], . . . , x[nP−1]]T . Note that for direct equal-
ization, the optimal training strategy is unknown. There-
fore, we assume that the pilot symbols are inserted at po-
sitions n0, . . . ,nP−1 and that the pilot symbols are not nec-
essarily surrounded with zeros on each side. Defining Yt as
the collection of columns of Y that corresponds to the train-
ing symbol positions subject to some decision delay, defin-
ing [Y]i as the ith column of the matrix Y, and defining
Yt = [[Y]d+n0 , . . . , [Y]d+nP−1 ], the PSAM direct equalizer
BEM coefficients are generally obtained by minimizing the
following cost function:

min
w

∥∥wTYt − xT
t

∥∥2
(31)

which is obtained as

w = (Y∗
t YT

t

)−1
Y∗

t xt . (32)

The solution in (32) is no more than the LS solution. A more
robust LS solution can be obtained by solving the regularized
LS problem as [28]

min
w

∥∥wTYt − xT
t

∥∥2
+
∥∥R1/2

ṽ w
∥∥2
. (33)

The solution of this problem is then obtained as

w = (Y∗
t YT

t + Rṽ
)−1

Y∗
t xt, (34)

which reduces to

w = (Y∗
t YT

t + σ2
nIP
)−1

Y∗
t xt, (35)

for the additive white Gaussian noise Rṽ = σ2
nI.

A ZF time-varying FIR equalizer can be obtained as in
(32) if the number of training symbols P ≥ Nr(Q′+1)(L′+1).
This is achieved provided that Nr(Q′ + 1)(L′ + 1) ≥ (Q +
Q′ + 1)(L+ L′ + 1) (see [1]). This is a necessary condition for
the channel matrix H (see (40)) to be of full column rank,
and therefore for a ZF time-varying FIR serial linear equal-
izer (SLE) to exist. Note that for (35), this condition is re-
laxed.

4. BLIND AND SEMIBLIND TECHNIQUES

4.1. Channel estimation

In this section we focus again on the problem of channel es-
timation, where the channel estimate is obtained via blind
techniques or semiblind techniques. We first discuss deter-
ministic blind channel estimation procedure. In blind meth-
ods the channel is estimated up to a scalar ambiguity and,
for example, computed from the singular value decompo-
sition (eigenvalue decomposition) of a large matrix. To re-
solve the scalar ambiguity, a blind technique combined with
a training-based technique is favorable resulting in a semib-
lind technique, which is discussed in a second section.
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4.1.1. Blind channel estimation

Here we discuss a deterministic subspace based blind channel
estimation [29]. It operates on time- and frequency-shifted
versions of the received sequence. Assume that (Q′ + 1)
frequency-shifts and (L′ + 1) time-shifts of the received se-
quence related to the rth receive antenna are stored in a
(Q′ + 1)(L′ + 1)× (N − L′) matrix Y(r).

Approximating the doubly selective channel using the
BEM, we can write the received vector at the rth receive an-
tenna y(r) = [y(r)[0], . . . , y(r)[N − 1]]T as

y(r) =
L∑
l=0

Q/2∑
q=−Q/2

h(r)
q,l DqZlx + v(r), (36)

where Dq = diag{[1, . . . , e j2πq(N−1)/K ]T}, Zl = [0N×(L−l), IN ,
0N×l], x = [x[−L], . . . , x[N − 1]]T , and v(r) is defined similar
to y(r). Hence, y(r)

q′,l′ can be written as

y(r)
q′,l′ =

L∑
l=0

Q/2∑
q=−Q/2

e j2πq(L′−l′)/Kh(r)
q,l Dq+q′ Z̃l+l′x + v(r)

q′,l′ , (37)

where Z̃k = [0(N−L′)×(L+L′−k), IN−L′ , 0(N−L′)×k], and v(r)
q′,l′ is

similarly defined as y(r)
q′,l′ .

Define X = [x−(Q′+Q)/2,0, . . . , x−(Q′+Q)/2,(L+L′+1), . . . ,
x(Q′+Q)/2,(L+L′+1)]T where xp,k is the pth frequency-shifted and
kth time-shifted version of the transmitted sequence ob-
tained as

xp,k = DpZ̃kx. (38)

A relationship between Y(r) and the transmitted se-
quence can be obtained by substituting (36) in Y(r) resulting
in

Y(r) =H (r)X + V(r), (39)

where H (r) is a (Q′ + 1)(L′ + 1) × (Q + Q′ + 1)(L + L′ + 1)
matrix given by

H (r)

=

⎡
⎢⎢⎢⎢⎢⎣
Ω−Q/2H

(r)
−Q/2 · · · ΩQ/2H

(r)
Q/2 0

. . .
. . .

0 Ω−Q/2H
(r)
−Q/2 · · · ΩQ/2H

(r)
Q/2

⎤
⎥⎥⎥⎥⎥⎦ ,

(40)

where Ωq = diag{[e− j2πqL′/K , . . . , 1]T}, and H (r)
q is given by

H (r)
q =

⎡
⎢⎢⎢⎢⎢⎣
h(r)
q,0 · · · h(r)

q,L 0

. . .
. . .

0 h(r)
q,0 · · · h(r)

q,L

⎤
⎥⎥⎥⎥⎥⎦ . (41)

The noise matrix V(r) is similarly defined as Y(r).
Stacking the Nr resulting matrices Y = [Y(1)T , . . . ,

Y(Nr )T]T , we obtain

Y =HX + V, (42)

where H = [H (1)T , . . . , H (Nr )T]T and V = [V(1)T , . . . ,
V(Nr )T]T .

Let us assume the following.

(A1) H has full column rank (Q + Q′ + 1)(L + L′ + 1) (see
[1]).

(A2) X has full row rank (Q + Q′ + 1)(L + L′ + 1) [9].
(A3) N − L′ ≥ Nr(Q′ + 1)(L′ + 1).

Under these assumptions, the matrix Y has I = Nr(Q′ +
1)(L′ + 1) − (Q + Q′ + 1)(L + L′ + 1) zero singular values in
the noiseless case (in the noisy case, these singular vectors are
referred to as noise singular values associated with the I mini-
mum singular vectors, see below). Suppose that u1, . . . , uI are
the I left singular vectors corresponding to the I zero singular
values. Then we can write

uH
i H = 01×(Q+Q′+1)(L+L′+1), ∀i ∈ {1, . . . , I}. (43)

Define ui=[u(1)T
i , . . . , u(Nr )T

i ]T , u(r)
i =[u(r)T

i,−Q′/2, . . . , u(r)T
i,Q′/2]T ,

and u(r)
i,q′=[u(r)

i,q′,0, . . . ,u(r)
i,q′,L′]

T . Then (43) can be equivalently
written as

UH
i h = 01×(Q+Q′+1)(L+L′+1), ∀i ∈ {1, . . . , I}, (44)

where h= [h(1)T , . . . , h(Nr )T]T with h(r) = [h(r)T
−Q/2, . . . , h(r)T

Q/2 ]T ,

and h(r)
q =[h(r)

q,0, . . . ,h(r)
q,L]T . In (44), Ui=[U(1)T

i , . . . , U(Nr )T
i ]T ,

where U(r)
i is defined as

U(r)
i =

⎡
⎢⎢⎢⎢⎢⎣
Ω−Q/2

1 U(r)
i,−Q′/2Ω

Q/2
2 · · · Ω−Q/2

1 U(r)
i,Q′/2Ω

Q/2
2 0

. . .
. . .

0 ΩQ/2
1 U(r)

i,−Q′/2Ω
−Q/2
2 · · · ΩQ/2

1 U(r)
i,Q′/2Ω

−Q/2
2

⎤
⎥⎥⎥⎥⎥⎦ , (45)
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with U(r)
i,q′ an (L + 1)× (L′ + L + 1) Toeplitz matrix given by

U(r)
i,q′ =

⎡
⎢⎢⎢⎣
u(r)
i,q′,0 · · · u(r)

i,q′,L′ 0
. . .

. . .

0 u(r)
i,q′,0 · · · u(r)

i,q′,L′

⎤
⎥⎥⎥⎦ , (46)

Ω1 = diag{[1, e j2π/K , . . . , e j2πL/K ]T}, and Ω2 = diag{[1,
e j2π/K , . . . , e j2π(L+L′)/K ]T}.

Collecting the results for the I left singular vectors we ob-
tain

UHh = 0I(Q+Q′+1)(L+L′+1)×1, (47)

where U= [U1, . . . , UI], from which h can be computed up
to a scalar ambiguity. In the presence of noise, we compute
the I left singular vectors of Y corresponding to the I small-
est singular values. We denote these vectors as û1, . . . , ûI , and
obtain the corresponding Û in a similar fashion as U. The
channel estimate is then obtained as

min
h

∥∥ÛH
h
∥∥2
. (48)

The solution is obtained by the singular vector of Û corre-
sponding to the smallest singular value.

4.1.2. Semiblind channel estimation

In blind methods, the channel is estimated up to a scalar
multiplication. To resolve the scalar ambiguity, training sym-
bols are used along with the blind technique resulting in the
so-called semiblind technique. In semiblind techniques, the
channel estimate is obtained by minimizing a cost function
consisting of two parts. The first part corresponds to the
training, and the second part corresponds to the blind es-
timation.

First, let us consider the channel estimate that relies on
known symbols. To facilitate channel estimation, we write
the input-output relationship as

yT = hT(INr ⊗Xsb) + vT , (49)

where y = [y(1)T , . . . , y(Nr )T]T , v = [v(1)T , . . . , v(Nr )T]T , and
the (Q+1)(L+1)×N matrix Xsb = [x−Q/2,0, . . . , xQ/2,L]T with
the qth frequency-shift and lth time-shift of the transmitted
sequence x is given by

xq,l = DqZlx. (50)

Let us assume that Nt symbols are used for training, and the
remaining symbols are data symbols. Collecting the received
symbols that correspond to training in one vector yt, and the
corresponding columns of Xsb in a matrix Xsb,t, we can write
the received sequence corresponding to training as

yt =
(

INr ⊗XT
sb,t

)
h + vt . (51)

An LS channel estimate ĥtr is then computed based on the

training symbols as

ĥtr =
(

INr ⊗XT
sb,t

)†
yt . (52)

To avoid the under-determined case, that is, the matrix INr ⊗
XT

sb,t is not of full column rank, it is required that the number
of training symbols be Nt ≥ (Q + 1)(L + 1). To have non-
overlapping data and training the optimal training strategy
again consists of (Q + 1) clusters of 2L + 1 training symbols.
Each cluster consists of a training symbol and L surrounding
zeros on each side [6]. Therefore, the training overhead is
actually (Q+1)(2L+1), and the non-overlapping part is Nt =
(Q+ 1)(L+ 1). This training overhead can be greatly reduced
by combining the training with a blind estimation technique
resulting in a semiblind technique.

The semiblind channel estimate can be obtained as

ĥsb = arg min
h

{
αhTÛ

∗
Û

T
h∗ +

∥∥yT
t − hT

(
INr ⊗Xsb,t

)∥∥2
}

,

(53)

where α > 0 is a weighting factor. In (53) the first part cor-
responds to blind estimation while the second part corre-
sponds to training. If α is large, then the blind method is
emphasized, whereas the LS training-based estimation is em-
phasized for small α.

The solution for the semiblind channel estimation prob-
lem is then obtained as

ĥsb =
(
αÛÛ

H
+ INr ⊗

(
Xsb,tX

H
sb,t

)T)−1(
INr ⊗XH

sb,t

)T
yt .

(54)

4.2. Direct equalization

In direct equalization the equalizer coefficients are ob-
tained directly without passing through the channel esti-
mation stage. There are many techniques that can be ap-
plied to obtain directly the equalizer coefficients for the case
of frequency-selective channels. These techniques are either
stochastic or deterministic. However, due to the fact that
we assume the BEM channel model, and the fact that the
channel BEM coefficients may change from block to block,
stochastic techniques cannot be applied. In this section we
will rely on deterministic direct equalization techniques. We
first discuss a deterministic blind direct equalization tech-
nique that relies on the so-called mutually referenced equal-
ization (MRE). MRE has been successfully applied to TI
channels [8, 9]. In MRE the idea is to tune a number of equal-
izers, where the output of one of these tuned equalizers is
used to train the other equalizers in a mutual fashion. For the
case of time-varying channels, the same idea can be applied,
but taking into account the time- and the frequency-shifts of
the received signal. A semiblind algorithm is again obtained
by combining the training-based LS method and the blind
MRE method.

4.2.1. Blind direct equalization

The idea of MRE-based blind direct equalization is to tune
various equalizers associated with reconstructing the trans-
mitted signal subject to a time- and frequency-shift. Define
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wT
p,k as the time-varying FIR equalizer that reconstructs the

pth frequency-shifted and kth time-shifted (delayed) version
of the received sequence in the noiseless case as

wT
p,kY = xT Z̃T

k Dp. (55)

In order to have mutually referenced equalizers training each
other for frequency-shifts p ∈ {−(Q+Q′)/2, . . . , (Q+Q′)/2}
and time-shifts (delays) k ∈ {0, . . . ,L + L′}, we set x =
[01×(L+L′), xT∗, 01×(L+L′)]T , with x∗ a data vector of length M =
N − L− 2L′.

Define Yp,k=YD−pZ̆k, with Z̆k=[0M×k, IM , 0M×(L+L′−k)]T .
Hence, we can write (55) as

wT
p,kYp,k = xT

∗. (56)

In order for (56) to lead to a ZF solution in the noiseless
case, we require that assumptions (A1) and (A2) required for
channel estimation to be satisfied in addition to

(A3’) the data length M > Nr(Q′ + 1)(L′ + 1),

Taking the 0th frequency-shift and the 0th time-shift equal-
izer w0,0 as a reference equalizer and collecting the dif-
ferent equalizer coefficients in one vector w = [wT

0,0,
wT
−(Q+Q′)/2,0, . . . , . . . , wT

−1,L+L′ , wT
0,1, . . . , wT

(Q+Q′)/2,L+L′]
T , we ar-

rive at the following:

wTY̆ = 01×M(Q+Q′+1)(L+L′+1), (57)

where

Y̆ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Y0,0 Y0,0 · · · Y0,0
−Y−(Q+Q′)/2,0 0 0

0 −Y−(Q+Q′)/2,1
...

. . .
...

0 · · · 0 −Y(Q+Q′)/2,L+L′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(58)

Note that in the noiseless case, it can be proven that the rank
of Y̆ is (Q + Q′ + 1)2(L + L′ + 1)2 − 1.

The different wp,k’s are linearly independent and cannot
be obtained from each other. The different equalizers can be
used as rows of a (Q+Q′ + 1)(L+L′ + 1)×Nr(Q′ + 1)(L′ + 1)
matrix W . Based on the ZF conditions we obtain the follow-
ing relation:

WH = γI(Q+Q′+1)(L+L′+1), (59)

where γ is some scalar ambiguity satisfying

wT
0,0Y0,0 = wT

p,kYp,k = γxT
∗, ∀p, k p �= 0, k �= 0. (60)

We can solve (57) either by using LS or by a subspace
decomposition [9]. For the LS solution we constrain the first
entry of w to 1 and solve (57) for the remaining entries of w
resulting in

wT
LS =

(
Y̆

H
Y̆
)−1

Y̆
H

y, (61)

where Y̆ is the matrix obtained after removing the first row of
Y̆ and y is this row multiplied by−1. The subspace approach

is obtained by taking ‖w‖2 = 1, and then w is found as the
left singular vector corresponding to the minimum singular
value of Y̆.

Note that if channel estimation is required, then using
(59) the channel can be estimated subject to some scalar am-
biguity.

4.2.2. Semiblind direct equalization

The MRE blind algorithm estimates the transmitted signal
up to a scalar ambiguity γ (see (60)). In addition, the blind
MRE is very complex. These two difficulties with the blind
MRE can be resolved by combining training with the blind
MRE method resulting in a so-called semiblind direct equal-
ization method. The proposed semiblind approach consists
of a combination of the training-based least-squares (LS)
method [30] and the blind MRE method [8, 9], both well-
known for frequency-selective channels, but here applied to
doubly selective channels. Again we consider different SLEs
that detect different time- and frequency-shifted versions of
the transmitted sequence. While during training periods, the
training symbols are used to train all equalizers, during data
transmission periods, each equalizer output is used to train
the other equalizers.

Starting from (56), we assume that Nt symbols in x∗ are
training symbols and the remaining Nd = M − Nt sym-
bols in x∗ are data symbols. Let us then collect the train-
ing symbols of x∗ in x∗,t and the data symbols of x∗ in
x∗,d. Let us further collect the corresponding columns of
Yp,k in Yp,k,t and Yp,k,d, respectively. Splitting (56) into its
training part and data part and stacking the results for p ∈
{−(Q + Q′)/2, . . . , (Q + Q′)/2} and k ∈ {0, . . . ,L + L′} we
arrive at the following:

wT
[
Y

t
, Y

d

]
= [xT

∗,tINt
, xT
∗,dINt

]
, (62)

where Y
t

and Y
d

are defined as

Y
t

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y−(Q+Q′)/2,0,t
. . .

Y−(Q+Q′)/2,L+L′,t
. . .

Y(Q+Q′)/2,L+L′,t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Y
d

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y−(Q+Q′)/2,0,d
. . .

Y−(Q+Q′)/2,L+L′,d
. . .

Y(Q+Q′)/2,L+L′,d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

INt
= 11×R ⊗ INt ,

INd
= 11×R ⊗ INd ,

(63)

where R = (Q + Q′ + 1)(L + L′ + 1).
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In the noisy case, we then have to solve

min
w,x∗,d

{∥∥∥wT
[
Y

t
, Y

d

]
− [xT

∗,tINt
, xT
∗,dINd

]∥∥∥2}
. (64)

The solution for x∗,d is given by

x̂T
∗,d = wTY

d
R−1ITNd

. (65)

Substituting (65) in (64), we obtain

min
w

{∥∥∥wT
[
Y

t
, Zd

]
− [xT

∗,tINt
, 01×NdR

]∥∥∥2}
, (66)

where Zd is given by

Zd

= R−1

⎡
⎢⎢⎣

(R− 1)Y−(Q+Q′)/2,0,d · · · −Y−(Q+Q′)/2,0,d
...

. . .
...

−Y(Q+Q′)/2,L+L′,d · · · (R− 1)Y(Q+Q′)/2,L+L′,d

⎤
⎥⎥⎦ .

(67)

In (66), the left and right parts, respectively, correspond
to the training-based LS method [30] and the blind MRE
method [8, 9], now applied to doubly selective channels.
So far in our analysis we considered all possible time- and
frequency-shifts which means that the method exhibits a
similar complexity as the blind technique. Due to the exis-
tence of the training part, we can limit the number of time-
and frequency-shifts resulting in a much lower complexity
semiblind technique. Therefore, we can redo the above anal-
ysis for time-shifts k ∈ {0, . . . ,K1} with K1 ≤ (L + L′) and
frequency-shifts p ∈ {−K2, . . . ,K2} with K2 ≤ (Q + Q′)/2.
In other words, by the aid of training the number of tuned
equalizers can be greatly reduced resulting in a much lower
complexity than the blind techniques. In contrast, for blind
techniques, for a ZF solution to be found, we require to
tune the equalizers corresponding to all possible time- and
frequency-shifts.

5. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
channel estimation and direct equalization techniques. As di-
rect techniques are still complex and prohibitive for practi-
cal reasons, only PSAM and semiblind techniques are sim-
ulated. We consider a rapidly time-varying channel simu-
lated according to Jakes’ model with fmax = 100 Hz, and
sampling time T = 25 µs. The channel order is considered
as L = 3. The channel autocorrelation function is given by
rg,l[k] = σ2

l J0(2π fmaxkT), where J0 is the zeroth-order Bessel
function. In the simulations the channel is assumed to be
WSS uncorrelated scattering with uniform power delay pro-
file σ2

l = 1 for l = 0, . . . ,L. For the simulations, we consider a
window size of N = 800 symbols unless stated otherwise. For
the BEM, we consider the critically sampled Doppler spec-
trum K = N , as well as the oversampled Doppler spectrum
with oversampling rate 2 (i.e., K = 2N). The number of basis
functions is, therefore, chosen to be Q = 4 for the critically
sampled case, and Q = 8 for the oversampled case.

5.1. PSAM techniques

(i) PSAM-based channel estimation

We use PSAM to estimate the channel. We consider equipow-
ered and equispaced pilot symbols with D the spacing be-
tween the pilots. The number of pilots is then computed as
P = �N/D� + 1. Since we adhere to the time-domain train-
ing [6], this training scheme consists of P-clusters, and each
cluster consists of a training symbol and L surrounding ze-
ros at each side as explained in Figure 1. This means that the
training overhead is P(2L + 1)/N .

First, we study the normalized channel MSE versus
signal-to-noise ratio (SNR), where the MSE channel estima-
tion is computed as

MSE

= 1
NchNrN(L + 1)

Nch∑
i=1

Nr∑
r=1

N−1∑
n=0

L∑
ν=0

∣∣ĥ(r)[n; ν]− g(r)[n; ν]
∣∣2

,

(68)

where Nch is the number of channel realizations, and
ĥ(r)[n; ν] is the estimate of (6) with the estimated BEM co-
efficients plugged in.

We evaluate the performance of the different estimation
techniques, in particular, a BEM (21) with K = N , a com-
bined BEM and MMSE (24) with K = N , a BEM with
K = 2N , a combined BEM and MMSE with K = 2N , and
finally the MMSE channel estimate (9). Note that the MMSE
and BEM techniques will exactly coincide if and only if the
underlying channel impulse response is perfectly described
by the BEM. We consider the case when the spacing between
pilot symbols is D = 165 which corresponds to P = 5 pilot
symbols dedicated for channel estimation. This choice is well
suited for K = N , where the number of BEM coefficients to
be estimated is Q+ 1 = 5. We also consider the case when the
spacing between pilot symbols is D = 95, which corresponds
to P = 9 pilot symbols. This case is well suited for K = 2N
where 9 BEM coefficients are to be identified. As shown in
Figure 2, when D = 165 all the MSE channel estimates suf-
fer from an early error floor. However, combining the criti-
cally sampled BEM with the MMSE results in a slightly better
performance. On the other hand, when D = 95 the perfor-
mance of the BEM with K = N suffers from an early error
floor, which means that increasing the number of pilot sym-
bols does not enhance the channel estimation technique. For
the case when K = 2N , the MSE curves do not suffer from
an early error floor. However, the oversampled BEM chan-
nel estimate is sensitive to noise. A significant improvement
is obtained when the combined BEM and MMSE method is
used, where a gain of 9 dB at MSE = −20 dB is obtained over
the conventional BEM method, when the oversampling rate
is 2. Note also that the performance of the combined BEM
and MMSE method when K = 2N coincides with the per-
formance of the MMSE only.

Second, we measure the MSE of the channel estimation
techniques as a function of the maximum Doppler frequency.
We design the system to have a maximum target Doppler fre-
quency of fmax = 100 Hz (used to design WMMSE). We then
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Figure 2: MSE versus SNR for D = 165 and D = 95.
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Figure 3: MSE versus fmax for P = 5, D = 160, and SNR = 25 dB.

examine the performance of the channel estimation tech-
niques for different maximum Doppler frequencies at a fixed
SNR = 25 dB. The results are shown in Figure 3 for the case
when P = 5 pilot symbols are used for channel estimation,
and when P = 9 pilot symbols are used. For either case, the
channel estimation techniques maintain a low MSE as long
as the channel maximum Doppler frequency is smaller than
the target maximum Doppler frequency.
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Figure 4: MSE channel estimation versus number of pilot symbols
P at SNR = 25 dB.

Third, we measure the MSE of the channel estimation
techniques as a function of the number of pilot symbols P
(this can be easily translated to pilot spacing D). In this sense,
we vary the number of pilot symbols P, while keeping the
same maximum Doppler frequency fmax at 100 Hz, and as-
suming the SNR = 25 dB. As shown in Figure 4, for the case
of K = N , increasing the number of pilot symbols (reducing
D) does not have a real impact on the MSE performance. This
is not due to the choice of D, but rather due to the modeling
error. On the other hand, the MSE channel estimation is sig-
nificantly reduced by increasing the number of pilot symbols
for K = 2N .

Finally, the estimated channel BEM coefficients are used
to design time-varying FIR equalizers serial and decision
feedback. We consider here a single-input multiple-output
(SIMO) system with Nr = 2 receive antennas. We con-
sider the MMSE-SLE [1] as well as the MMSE serial decision
feedback equalizer (MMSE-SDFE) [2]. For the case of the
MMSE-SLE, the SLE is designed to have order L′ = 12 and
the number of time-varying basis functions Q′ = 12. For the
case of the MMSE-SDFE, the time-varying FIR feedforward
filter is designed to have order L′ = 12 and the number of
time-varying basis functions Q′ = 12, while the time-varying
FIR feedback filter is designed to have order L′′ = L and
Q′′ = Q. The SLE coefficients as well as the SDFE coefficients
are computed as explained in [1] for the MMSE-SLE, and in
[2] for the MMSE-SDFE. The BEM resolution of the time-
varying FIR filters matches that of the channel. QPSK signal-
ing is assumed. We define the SNR as SNR = (L + 1)Es/σ2

n ,
where Es is the QPSK symbol power. As shown in Figure 5,
for the case of MMSE-SLE, the BER curve experiences an er-
ror floor when D = 165 for the different scenarios. For the
case of D = 95, we experience an SNR loss of 11.5 dB for the
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Figure 5: BER versus SNR using the MMSE-SLE.

case of K = 2N compared to the case when perfect channel
state information (CSI) is known at BER = 10−2, while the
SNR loss is reduced to 6 dB for the case of combined BEM
and MMSE when K = 2N . For K = N , both cases (BEM and
combined BEM and MMSE) suffer from an error floor. Sim-
ilar observations can be made for the case of MMSE-SDFE as
shown in Figure 6.

(ii) PSAM direct equalization

We use here the same channel setup. We assume that the
training overhead is 50%, that is, we insert a pilot symbol
every second symbol. The simulation results are shown in
Figure 7 for a BEM resolution K = N as well as for a BEM
resolution K = 2N . We consider the LS criterion (32) and
the regularized LS criterion (35). We choose the equalizer
to have a fixed order L′ = 4 and variant Q′ = 4, 8, and 12.
As one can deduce from this figure, the PSAM direct equal-
ization performance relies heavily on the design parameters
of the equalizer. As shown in this figure, the performance
of the direct PSAM equalizer does not necessarily improve
by choosing larger Q′ and/or L′, which suggests that there
is an optimal (Q′,L′) pair. For Q′ = 4, the performance of
the direct PSAM equalizer for K = N and K = 2N almost
coincide, which means for this equalizer setup, BEM over-
sampling is almost of no effect. The same can be said when
Q′ = 8. For Q′ = 12, the performance of the direct PSAM
equalizer for K = N outperforms the one for K = 2N . For
K = 2N the performance is even worse than for Q′ = 8.
When Q′ = 12, BEM oversampling has a negative impact
on the performance. This can be explained by considering
the fact that increasing Q′ on one hand increases the equal-
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Figure 6: BER versus SNR using the MMSE-SDFE.
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Figure 7: BER versus SNR for PSAM-based direct equalization.

izer time-variations which is supposed to have a positive im-
pact on the performance, but on the other hand, it means
more parameters have to be identified. For perfect knowledge
of CSI, the performance of the time-varying FIR equalizers
naturally improves by increasing the number of BEM basis
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Figure 8: MSE versus SNR for the semiblind channel estimation
technique.

functions. Note that in the above analysis we did not distin-
guish between the LS and the regularized LS as they perform
almost the same for this setup.

5.2. Semiblind techniques

(i) Semiblind channel estimation

For semiblind channel estimation, we again study MSE ver-
sus SNR, where the MSE channel estimation is obtained as
in (68). For this case we use the same channel setup as be-
fore. We again consider the BEM resolution K = N as well as
K = 2N . The training part consists of two training clusters of
L+ 1 training symbols each. The first one is placed at the be-
ginning of the transmitted block and the other one is placed
in the middle of the transmitted block.

First, we study the channel MSE versus SNR for a fixed
α = 0.1. The simulation results are shown in Figure 8. The
MSE channel estimate suffers from an error floor for K = N ,
whereas it shows a slight improvement for K = 2N specially
for SNR ≥ 15 dB.

Second, the MSE channel estimate is plotted versus α for
a fixed value of SNR = 30 dB. The simulation results are
shown in Figure 9. For this channel setup, and for BEM res-
olutions K = N and K = 2N , it is found that the MMSE
channel estimate is obtained for α = 0.1. This actually justi-
fies the choice of α in the first part of the simulations.

(ii) Semiblind direct equalization

For semiblind direct equalizer estimation, we consider a
SIMO system with Nr = 4 receive antennas. We assume a
doubly selective channel with Doppler spread of fmax = 100
and order L = 3. We use QPSK signaling. We assume the data
sequence and the additive noises are mutually uncorrelated
and white.
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Figure 9: MSE versus α for the semiblind channel estimation tech-
nique at SNR = 30 dB.

We consider a time-window of NT = 200T . When NT ≤
1/(2 fmax), which is the case here, an accurate channel model
can be obtained by taking Q = 2. We insert a pilot symbol af-
ter every four data symbols (i.e., training overhead of 20%).
We consider three SLE designs: ideal design where perfect
channel state information is assumed to be known at the re-
ceiver (see [1, 3]), the direct training-based design where the
equalizer coefficients are obtained directly based on PSAM
using the LS (32) as well as the regularized LS (35) criterion
(see also [25]), and the direct semiblind design proposed in
this paper. For all designs, we assume Q′ = 2, L′ = 3, and
d = (L + L′)/2 = 3. For the direct semiblind design we take
K1 = L and K2 = Q/2, that is, we consider the time-shifts
k ∈ {0, . . . ,L}, and frequency-shifts p ∈ {−Q/2, . . . ,Q/2}.
For the ideal design, we first fit a BEM to the true doubly se-
lective channel over the time window of NT = 200T , and use
the obtained BEM coefficients to design the BEM coefficients
of the SLE. The simulation results are shown in Figure 10.
From this figure, we can draw the following conclusions:

(1) the direct semiblind design clearly outperforms the di-
rect PSAM when the LS criterion is invoked, where an
SNR gain of 16 dB is observed at BER = 10−2,

(2) compared to the regularized direct PSAM, the semib-
lind has superior performance for the indicated range
of SNR for the case of BEM resolution K = N . For this
case, an SNR gain of 6 dB is observed at BER = 10−2.
For the case of BEM resolution K = 2N , the semib-
lind technique outperforms the regularized LS direct
PSAM for low to moderate values of SNR. The regu-
larized LS direct PSAM slightly outperforms the direct
semiblind for SNR > 20 dB. At BER = 10−2 an SNR
gain of 2.5 dB for the direct semiblind over the regu-
larized LS direct PSAM is observed,

(3) compared to the performance of the MMSE SLE for
the perfect CSI, an SNR loss of 5 dB is observed at
BER = 10−2 for the direct semiblind design.
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6. CONCLUSIONS

In this paper, we have proposed channel estimation and di-
rect equalization techniques for transmission over doubly
selective channels. In particular, we have proposed PSAM,
blind, and semiblind techniques. In PSAM techniques we rely
on pilot symbols for channel estimation or direct equaliza-
tion. We consider the case when the Doppler spectrum is
critically sampled (K = N) as well as when the Doppler spec-
trum is oversampled (K ≥ rN with integer r > 1). While
in the first case, the estimation scheme suffers from an early
error floor due to the large modeling error, the estimation
is sensitive to noise in the oversampled case. It has been
shown through computer simulations that combining the
MMSE-interpolation-based channel estimate with the over-
sampled BEM significantly improves the channel estimation.
We have also shown that the channel estimation step can be
skipped by performing direct equalization based on PSAM.
For a fixed training scheme, the PSAM-based direct equal-
izer depends heavily on the equalizer parameters and on the
oversampling factor. Whereas, in some cases the oversam-
pled BEM outperforms the critically sampled one, in oth-
ers the critically sampled outperforms the oversampled BEM.
In blind techniques, no training overhead is used to esti-
mate or directly equalize the doubly selective channel. How-
ever, they are practically prohibited due to the complexity
involved. Semiblind techniques, on the other hand, are ob-
tained by combining the training-based techniques with the
blind techniques. Doing so, the scalar ambiguity of the blind
techniques is resolved, and the complexity may be greatly re-
duced especially for the case of direct equalization.

ACKNOWLEDGMENTS

This research work was carried out at the ESAT Labora-
tory of the Katholieke Universiteit Leuven, in the frame of
the Belgian State, Prime Minister’s Office—Federal Office for
Scientific, Technical, and Cultural Affairs—Interuniversity
Poles of Attraction Programme (2002–2007), P5/11 “mo-
bile multimedia communication systems and networks”, the
Concerted Research Action GOA-MEFISTO-666 (Mathe-
matical Engineering for Information and Communication
Systems Technology) of the Flemish Government, and Re-
search Project FWO no. G.0196.02 “design of efficient com-
munication techniques for wireless time-dispersive multi-
user MIMO systems”. The scientific responsibility is assumed
by its authors. The first author was partly supported by
the Palestinian European Academic Cooperation in Edu-
cation (PEACE) Programme. The second author was sup-
ported in part by the NWO-STW under the VIDI Program
(DTC.6577).

REFERENCES

[1] I. Barhumi, G. Leus, and M. Moonen, “Time-varying FIR
equalization for doubly selective channels,” IEEE Transactions
on Wireless Communications, vol. 4, no. 1, pp. 202–214, 2005.

[2] I. Barhumi, G. Leus, and M. Moonen, “Time-varying FIR
decision feedback equalization of doubly-selective channels,”
in Proceedings of IEEE Global Telecommunications Conference
(GLOBECOM ’03), vol. 4, pp. 2263–2268, San Francisco, Calif,
USA, December 2003.

[3] G. Leus, I. Barhumi, and M. Moonen, “Low-complexity serial
equalization of doubly selective channels,” in Proceedings of 6th
Baiona Workshop on Signal Processing in Communications, pp.
69–74, Baiona, Spain, September 2003.

[4] I. Barhumi, G. Leus, and M. Moonen, “Per-tone equalization
for OFDM over doubly-selective channels,” in Proceedings of
the IEEE International Conference on Communications, vol. 5,
pp. 2642–2647, Paris, France, June 2004.

[5] T. Thomas and F. Vook, “Multi-user frequency-domain chan-
nel identification, interference suppression, and equalization
for time-varying broadband wireless communications,” in
Proceedings of the 1st IEEE Sensor Array and Multichannel Sig-
nal Processing Workshop (SAM ’00), pp. 444–448, Cambridge,
Mass, USA, March 2000.

[6] X. Ma, G. B. Giannakis, and S. Ohno, “Optimal training
for block transmissions over doubly selective wireless fad-
ing channels,” IEEE Transactions on Signal Processing, vol. 51,
no. 5, pp. 1351–1366, 2003.

[7] G. Xu, H. Liu, L. Tong, and T. Kailath, “Least-squares approach
to blind channel identification,” IEEE Transactions on Signal
Processing, vol. 43, no. 12, pp. 2982–2993, 1995.

[8] D. Gesbert, P. Duhamel, and S. Mayrargue, “On-line blind
multichannel equalization based on mutually referenced fil-
ters,” IEEE Transactions on Signal Processing, vol. 45, no. 9, pp.
2307–2317, 1997.

[9] G. B. Giannakis and C. Tepedelenlioǧlu, “Direct blind equaliz-
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