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Abstract—The sound field in a room can be represented
by a weighted sum of room modes. To estimate the room
modes, current literature uses on-the-grid, sparse reconstruction
methods. However, these on-the-grid methods are known to
suffer from basis mismatch. In this work, we investigate the
use of a gridless framework for estimating room modes using
atomic norm minimization, a gridless method. The advantage
of this approach would be that it does not suffer from this
basis mismatch problem. We derive a bound for the sound field
reconstruction problem in a one-dimensional room with rigid
walls and relate this to the frequency separation that is required
by the atomic norm. We conclude that for perfect reconstruction
based on the investigated gridless approach, additional prior
knowledge about the signal model is required. We show how
recovery is possible in a one-dimensional setting by exploiting
both the structure of the sound field and the acquisition method.

Index Terms—atomic norm, sparse recovery, (spatial) fre-
quency estimation, room acoustics, sound field reconstruction

I. INTRODUCTION

Knowing how the sound pressure varies over space and
time has many applications, e.g., room compensation [1],
dereverberation [2], and sound zone reconstruction [3]. Re-
constructing sound fields inside enclosures comes with extra
challenges as the surroundings, such as the geometry of the
enclosure and the materials used, influence the sound field.
Reconstructing a satisfying sound field in the whole enclosure
by extrapolating from few measurements is thus not an obvious
task.

For ease of illustration, we focus on rectangular rooms in
this paper (see Fig. 1). However, the principles here can be
extended to any enclosure. Typically, microphones indicated in
Fig. 1 by the red dots, are used to measure the sound pressure.
However, the microphones cannot be placed arbitrarily across
the room, but are typically placed upon the physical objects
inside the room. This means that in practice only a small
number of microphones can be used. From the sound pressure
measured at the microphone locations, the sound pressure in
the whole room must be estimated, as shown in the lower half
of Fig. 1.

Several solutions for sound field reconstruction have been
proposed in the past, e.g. [4]–[7]. Assuming that the room
modes can be expanded into plane waves, current litera-
ture estimates the corresponding modal frequencies [5]–[7].
Knowledge about the shape of the room modes and the modal
frequencies of a room is very useful, as it allows to calculate
the sound field resulting from any source receiver pair.

In the low frequency range, the sound field can be repre-
sented by a small number of room modes. Therefore, estimat-
ing room modes is done by the use of compressive sensing
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Fig. 1. Living room and corresponding sound field at 150 Hz.

techniques and convex optimization (e.g. [6], [7]), due to
its versatility to include prior knowledge about the setting.
These approaches use methods based on the lasso problem
[8], which use a sparsity promoting ℓ1-norm. Such methods
are often referred to as ‘on-the-grid’ methods, as they use a
grid to form a basis. However, they suffer from what is called
basis mismatch [9], because the assumed basis never exactly
matches the actual basis of the signal. As a result on-the-
grid methods will always make an approximation of the room
modes, and will never produce an exact reconstruction.

Last decade a ‘gridless’ solution to this basis mismatch has
been introduced, known as the atomic norm [10], [11]. In
this work we investigate whether a gridless framework using
the atomic norm can be used as a replacement for the on-
the-grid methods for the estimation of modal frequencies. We
start by studying a model of a room that has been simplified
significantly, in order to reduce the complexity of the problem.
However, its analysis gives insights into the challenges ahead,
even for more complicated scenarios.

The remainder of this paper is organized as follows. First,
in Section II, the signal model is introduced, as well as the on-
the-grid and proposed gridless approach. Then in Section III
we derive a theoretical bound for the sound field reconstruction
problem in a boxed-shaped room and compare this with
the frequency separation required by the atomic norm for a
successful signal recovery. In Section IV we discuss how to
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include prior knowledge about the signal model and exploit
the acquisition method, finally we validate the derived bound
with numerical simulations in Section V.

II. MODAL FREQUENCY ESTIMATION

A. Signal Model

For simplicity we will look at a one-dimensional room with
rigid walls. We assume that the room has length Lx and is
excited by a point source located at x = x0. The Green’s
function in this setting is defined as

G(x, x0, ω) = − 1

Lx

∞∑
n=0

ψn(x0)

(ωc )
2 − k2n

ψn(x), (1)

where c is the speed of sound and ψn(x) is the n’th room mode
(eigenfunction) with corresponding n’th modal frequency kn
(eigenfrequency). Let us assume the source emits L temporal
frequencies indicated by ωl. The sound field is then defined
as

p(x, ω) = − 1

Lx

L∑
l=1

Clδ(ω − ωl)

∞∑
n=0

ψn(x0)

(ωc )
2 − k2n

ψn(x), (2)

where Cl ∈ R is a constant, which allows for excitation
frequencies with varying amplitudes. For a room with rigid
walls, ψn(x) =

√
2 cos(knx) and kn = n π

Lx
[12].

In total, we define Mt potential microphone positions inside
the room on a uniform grid, i.e., xm = m

F where m ∈ Jt

for Jt = {1, 2, . . . ,Mt} and 1
F is the distance between

successive positions. Note that xm ∈ (0, Lx). Similarly, we
denote by Jo the subset of indexes corresponding to the
observed measurements, i.e., Jo ⊆ Jt. We place Mo ≤ Mt

microphones at positions chosen uniformly at random from
the index set Jt, to form the ‘observed’ set. The situation is
illustrated in Fig. 2.

microphone
source
wall
potential microphone position

Fig. 2. Measurement setup in a 1D room.

Using the complex exponential expansion for the cosine
function, and assuming we can satisfyingly represent the sound
field with a finite number of room modes, we can define a
system of equations over the set Jt as

P = AS, (3)

where the potential measurements are stacked in the matrix
P ∈ RMt×L, with columns pl = [p(x1, ωl), . . . , p(xMt

, ωl)]
T ,

A = [a(k1), . . . , a(kN )] ∈ CMt×N is the steering ma-
trix containing the set of modal frequencies, a(kn) =
[ejknx1 , ejknx2 , . . . ]T , with n ∈ {−N−1

2 , . . . ,+N−1
2 }, S ∈

RN×L is the source matrix containing the weights of each
modal frequency, with elements sn,l = − Cl

Lx

cos(knx0)

(
ωl
c )2−k2

n

. In
general this system is underdetermined, N > Mt. However,
the columns of the source matrix are approximately sparse,
as only the room modes with modal frequencies close to ωl

c
get excited significantly. This allows for compressive sensing
techniques to solve the problem.

B. Existing On-the-grid Method

In order to determine the modal frequencies and correspond-
ing amplitudes, prior art (e.g. [6], [7]) minimizes an ℓ1-norm
of a weighted (sparse) vector bl,

min
[b1,b2,...,bL]∈CR×L

∑L
l ||Llbl||1

s.t. Pi − D[b1,b2, . . . ,bL] = 0,∀i ∈ Jo

(4)
where the basis D is formed by a dictionary of R spatial
frequencies vr ∈ [−πF, πF ] on a uniform grid and weighting
Ll = diag(

(
ωl

c

)2 − v2), v = [v1, . . . , vR]
T .

The basis mismatch problem results from the discrete dic-
tionary D. One assumes that the modal frequencies are inside
this dictionary, but in practice this is never exactly the case
resulting in a mismatch between the actual basis A and the
assumed basis D. If the size of the dictionary is increased, the
mismatch decreases, however this comes with computational
costs and higher coherence between the columns of D [13]. If
the dictionary is too small, the modal frequencies might not be
in the dictionary, decreasing the accuracy of the reconstruction.
If an on-the-grid method is used, one thus has to tackle this
trade-off and will inherently make an error due to the fact that
a grid is used.

C. Proposed Method

To circumvent the basis mismatch problem we investigate
the use of a gridless framework, using the atomic norm. This
method makes use of a set of atoms as dictionary,

A = {a(f,ϕ) = a(f)ϕ : f ∈ [0, F ),ϕ ∈ C1×L, ||ϕ||2 = 1},
(5)

where a(f) = [ej2πfx1 , . . . , ej2πfxMt ]T ∈ CMt . Note that the
frequency f is defined over a continuous interval, therefore
the set defines a continuous dictionary. The atomic (ℓ1) norm
is defined as

||P||A = inf
{∑

k∈K

ck : P =
∑
k∈K

cka(fk,ϕk),a(fk,ϕk) ∈ A
}
,

(6)
where ck > 0 and K is the set containing the indices of the
atoms. Alternatively to (4), we use the atomic norm to promote
a sparse set of modal frequencies:

min
P̃∈CMt×L

||P̃||A, s.t. P̃i = Pi, ∀i ∈ Jo, (7)
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here Pi denotes the i’th row of P. The atomic norm can be
cast into an SDP [11]. Therefore the optimization problem is
reformulated as

min
W∈CL×L,u∈CMt ,P̃∈RMt×L

Tr(Toep(u)) + Tr(W)

s.t.
[
Toep(u) P̃

P̃H W

]
≽ 0

P̃i = Pi, ∀i ∈ Jo.

(8)

Using the matrix Toep(u), the atomic norm tries to find a
matrix related to the covariance matrix of P. From the optimal
solution Toep(u∗), we can therefore retrieve the estimated
frequencies using any subspace method. Assume that the ϕk’s
are independent random variables with E[ϕk] = 0. Then, if the
modal frequencies kn adhere to a certain frequency separation
∆k, which is the minimum pairwise distance,

∆k ≥ 2πF
α

Mt − 1
, (9)

for α > 0, there exist a numerical constant C, such that

Mo ≥ Cmax
{
log2

Mt

√
L

δ
,N log

N

δ
log

Mt

√
L

δ

}
. (10)

is sufficient to guarantee that, with probability at least 1− δ,
the atomic norm will exactly recover the original signal [11].
Tang et al. [11] proved that successful recovery of the (modal)
frequencies is guaranteed if α = 4 in (9). However in practice
its value can be lower [14], and depends on the parameters of
the model. Note that our model only approximately meets all
the assumptions on ϕk, as the rows of S are not completely
independent. It is therefore of great interest to look at the
performance of the atomic norm for our signal model, and to
derive corresponding bounds on the value of α.

III. BOUNDS FOR SOUND FIELD RECONSTRUCTION

A. Frequency Separation of Modal Frequencies

The modal frequencies are given by kn = n π
Lx

[12], and
thus are separated by ∆k = π

Lx
. Using this, we can rewrite

(9) and derive that we need at least

Mt ≥ 2πF
α

∆k
+ 1

= 2 · F · α · Lx + 1.
(11)

Additionally, the size of the room puts a limit to the number of
possible measurement locations Mt; the measurements must
be inside the room, thus 0 < xm < Lx,∀m ∈ Jt. From this
we must have that minm(xm) = 1

F > 0, which is satisfied,
and that

max
m

(xm) =
Mt

F
< Lx, (12)

and thus
Mt < F · Lx. (13)

Now we combine (11) and (13), to write

F · α · 2Lx + 1 < F · Lx. (14)

The inequality in (14) will be satisfied for practical situations
(Lx > 0, F > 0) if and only if 0 < α < 1

2 .

In conclusion, a frequency separation, shown in (9), with at
least α < 1

2 is sufficient, in order to be able to solve the modal
frequency estimation problem exactly with high probability.
Now, before we look at the performance of the atomic norm
in practice, we first derive a lower bound that is inherent to
the problem itself.

B. Knowns vs. Unknowns

Due to the fact that only finite number of measurements are
available in practice, the estimated modal frequencies cannot
be arbitrarily close. We are interested in a lower bound on the
frequency separation, regardless of the method one is using
to solve the problem. We can then relate this bound to the
frequency separation required by the atomic norm, to get an
idea of the performance of the atomic norm.

From (3) we know that we have MtL knowns, the number
of (real) elements in the measurement matrix P. On the
contrary, the steering matrix A and the source matrix S
are unknown, resulting in N(1 + L) unknowns in total; N
unknown frequencies in A (not MtN because the structure
of A is assumed to be known), and NL unknowns in S (of
which the structure is not known). If no other prior knowledge
is available, the number of unknown variables cannot be lower
than the number of known ones. From this it follows that,

MtL ≥ N(1 + L), (15)

and thus,
1

N
≥ (1 + L)

MtL
. (16)

Note that if N (spatial) frequencies are to be fit uniformly
on a interval of length 2πF , then the maximum frequency
separation that can be reached is 2πF

N , thus 2πF
N = 2πF α

Mt−1 .
As a result, and using (16),

α = (Mt − 1)
1

N
≥ (Mt − 1)

(1 + L)

MtL

= (1 +
1

L
)(1− 1

Mt
).

(17)

From (17) it is clear that α can never be lower than 1
2 provided

that L > 0 and N > 0. Thus, we can conclude that the
frequency separation required by the atomic norm can not be
reached, by construction of the problem. This means that more
prior knowledge about the problem has to be included to lower
the bound derived in (17).

IV. EXPLOITING PRIOR KNOWLEDGE

We have shown that atomic norm minimization without
further exploiting the structure of the problem is not enough
for recovery. Thus, we need to incorporate more prior knowl-
edge to meet the bound. In particular, we describe here two
strategies used in conjunction to realize successful recovery.
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A. Mirror Image

In the case of rigid walls, the sound field is perfectly
reflected by the walls. Therefore we can create “image micro-
phones” on the other side of a wall, as illustrated in Fig. 3. For
this operation, the location of the corresponding wall must be
known. In order to avoid a trivial case, we assume the length
of the room is not fully known, i.e., we only take as reference
one of the walls and use it to duplicate the measurements
by mirroring them. By including one reflection, the number

microphone
reflection

potential microphone position

source
wall

Fig. 3. 1D room with one reflection.

of knowns is increased by a factor two, therefore the lower
bound on α becomes

α ≥ 1

2
(1 +

1

L
)(1− 1

Mt
). (18)

By adding these new measurements, we have managed
to reduce the constraint on the number of measurements.
However, we still need to further exploit the structure of the
problem to meet the inequality in (14).

B. Spectral symmetry

For the rigid wall case, the room modes are cosines. All
positive modal frequencies will also occur on the negative
side of the spatial frequency spectrum. Hence, we only need
to consider the positive side of the spectrum. To reduce the
number of unknowns, we would thus like to remove the
negative side of the spectrum in our signal. This can be done
by using the Hilbert transform, if a continuous measurement
is available. Instead of a static grid of microphones, one
could use a moving microphone, (the variable x in the signal
model in (2) is replaced by vt, where v is the speed of
the microphone), to get a continuous measurement in time
[15]. We assume that the Doppler effect, due to the moving
microphone, can be removed [16].

First, the Hilbert transform is applied to the continuous
signal, then the signal is discretized again, by tm = 1

vxm,
such that the notation is consistent. By performing the Hilbert
transform, the number of unknowns is decreased by a factor
two, therefore the lower bound on α becomes

α ≥ 1

4
(1 +

1

L
)(1− 1

Mt
). (19)

Now the lower bound is smaller than 1
2 . Hence, the only

question is whether the atomic norm attains a value lower
than 1

2 in practice. To ensure the framework finds a solution
consisting of only positive frequencies, an extra constrained is
added to the minimization problem, inspired by [17].

Assuming the negative frequencies are removed, the opti-
mization problem becomes

min
W∈CL×L,u∈C2Mt ,P̃∈R2Mt×L

Tr(Toep(u)) + Tr(W)

s.t.
[
Toep(u) P̃

P̃H W

]
≽ 0

P̃i =

[
ΠMt

P∗

P

]
i

,∀i ∈ Jo

e−jaFToep(u)GH + ejaGToep(u)FH

−2 cos(b)GToep(u)GH ≽ 0.
(20)

Here ΠMt
is a permutation matrix with ones on its anti-

diagonal, and zeros elsewhere, a = b = π
2 and

F =
[
0(Mt−1),1 IMt−1

]
, (21)

G =
[
IMt−1 0(Mt−1),1

]
. (22)

Note the slight abuse of notation in (20), as the index i
indicates two rows, due to the construction of the mirrored
measurements.

V. NUMERICAL SIMULATIONS

In Section II we mentioned that in practice α < 4. In Section
III we showed that α should be lower than 1

2 for perfect signal
recovery, while a lower bound is given by (17). In this section,
we verify the bounds with numerical simulations and show
what happens if prior knowledge is included, as described in
Section IV.

First, we look at the value α that is attained in practice when
no prior knowledge is included. We investigate the probability
of successful recovery with respect to the frequency separation
as a function of α that is required by the atomic norm (see
(9)). We simulate the model described by (3), however, we
change the set of modal frequencies to kn = n · 2πF α

Mt−1 .
We consider the full data case, Mo = Mt = 15. The source
emits L frequencies, which are i.i.d. from U [0, cπF ). The
modal frequency separation is changed by using different
α ∈ {0.5, 0.55, 0.60, . . . , 2}. We solve the SDP in (8) and
retrieve the frequencies by performing ESPRIT [18] on the
the optimal Toeplitz matrix.

We say the signal is recovered with success if the number of
retrieved modal frequencies N̂ is equal to the actual number
of modal frequencies in the signal N that lay in the Nyquist
range (−πF, πF ), thus N̂ = N and if additionally

RMSE =

√√√√ 1

N

N∑
n=1

(k̂n − kn)2 < 10−5 (23)

where {k̂1, . . . , k̂N} denote the retrieved modal frequencies
and {k1, . . . , kN} denote the actual modal frequencies present
in the signal. In total 30 Monte Carlo runs are performed for
each value of α. The successes are averaged over the runs to
get an estimate of the probability of successful recovery. The
result is shown in Fig. 4. We make the following observations:

• The derived bound in (17) is respected.
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• The atomic norm attains values close to the bound and
in practice it performs better than the α = 4 that was
theoretically proven for the general case (meeting the
independence assumption on the ϕk’s) by [11].

• As suggested by the derived bound in (17), increasing
the number of excitation frequencies L leads to a smaller
lower bound on α, and the atomic norm also attains lower
values if more excitation frequencies are included.

• The atomic norm is not able to reach α < 0.5 and is thus
not able to perfectly reconstruct the modal frequencies of
a boxed-shaped room.
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Fig. 4. Probability of successful recovery for varying frequency separation,
averaged over 30 Monte Carlo runs, M = Mo = Mt = 15.

Finally we simulate the room with the correct modal frequen-
cies, kn = n π

Lx
, while we also include more prior knowledge,

as discussed in Section IV. We only simulate the positive
frequencies, thus the first N−1

2 columns of A are omitted. We
use Mo =Mt = 15, Lx = 5, F = 3, the source emits L = 50
frequencies, which are i.i.d., ωl ∼ U [0, cπF ). We solve the
SDP in (20). The magnitude of the dual polynomial of the
problem is shown in Fig. 5, which attains one exactly at the
modal frequencies. The RMSE of the estimated frequencies is
in the order of 10−8.

VI. CONCLUSION

We have investigated if we can estimate the room modes
using the atomic norm, a gridless method. We have derived
a bound for the sound field reconstruction problem and relate
this to the frequency separation that is required by the atomic
norm for perfect reconstruction. We show that prior knowledge
has to be included to be able to reach perfect reconstruction
by the atomic norm. We describe two strategies that, in
conjunction, can be used to realize successful recovery. Our
findings are confirmed by numerical simulations.
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