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Abstract—Having knowledge on the room acoustic properties,
e.g., the location of acoustic reflectors, allows to better reproduce
the sound field as intended. Current state-of-the-art methods
for room boundary detection using microphone measurements
typically focus on a two-dimensional setting, causing a model
mismatch when employed in real-life scenarios. Detection of
arbitrary reflectors in three dimensions encounters practical
limitations, e.g., the need for a spherical array and the increased
computational complexity. Moreover, loudspeakers may not have
an omnidirectional directivity pattern, as usually assumed in the
literature, making the detection of acoustic reflectors in some
directions more challenging. In the proposed method, a LiDAR
sensor is added to a loudspeaker to improve wall detection
accuracy and robustness. This is done in two ways. First, the
model mismatch introduced by horizontal reflectors can be
resolved by detecting reflectors with the LiDAR sensor to enable
elimination of their detrimental influence from the 2D problem
in pre-processing. Second, a LiDAR-based method is proposed
to compensate for the challenging directions where the directive
loudspeaker emits little energy. We show via simulations that this
multi-modal approach, i.e., combining microphone and LiDAR
sensors, improves the robustness and accuracy of wall detection.

Index Terms—LiDAR, Loudspeaker, Room acoustics

I. INTRODUCTION

Room properties have a large influence on the sound field
reproduction, meaning the highest reproduction quality can
only be obtained when the room influence is known. For
example, when a loudspeaker is placed close to a wall or
corner, the lower frequency range in the room is amplified
compared to the mid and high frequency, resulting in an
unbalanced sound experience [1]. Working from home has
led to a large increase in teleconference meetings. To use
teleconference meetings as a feasible alternative to in-person
meetings, speech intelligibility is a crucial factor. The reduced
speech intelligibility due to echoes introduced by the room,
makes it crucial to be aware of the nearby walls that introduce
these echoes [2]. The introduction of smart loudspeakers gives
rise to opportunities to estimate room parameters to improve
the sound experience of the user. Of particular importance is
information on the proximity of the walls. If the wall locations
are known, their effects can be compensated for using digital
filters [3] [4]. In this paper we address the problem of detecting
the walls in close proximity to the speaker using sensors on
the speaker.

Modern smart loudspeakers are often equipped with micro-
phone arrays for voice commands. The presence of these mi-
crophone arrays can also be exploited for the detection of the

nearby reflective surfaces together with the loudspeaker driver
via the room impulse response (RIR). In [5], Dokmanić et al.
aimed to reconstruct a convex polyhedral room from impulse
responses exploiting the properties of Euclidean distance ma-
trices (EDMs) in the general 3D case. Since this combinatorial
problem is NP-hard, the computational complexity is high.
Furthermore, precise timing information on the impulses is
required, which is challenging due to filtering. De Jager et al.
proposed [6] a method that solves the combinatorial problem
at the same accuracy but at a much lower complexity by posing
the problem as a graph. Coutino et al. proposed a greedy
method to further reduce this computational complexity in [7].
Even though the recent algorithms are much faster, this is still
a limitation. Furthermore, these methods rely on perfect peak
detection from the RIR. More recently, Zaccà et al. [8] posed
this problem as a linear system. This system directly maps
the image source locations to the received impulse response,
including the loudspeaker directivity. This method does not
rely on peak detection from the impulse response, however,
the computational complexity of solving the inverse problem
limits the method in practical applications to 2D. Furthermore,
the successful identification of reflectors in regions where the
loudspeaker radiates little energy, i.e., the back, is considerably
lower than would be desirable.

It is possible to take advantage of the presence of other
sensing modalities like LiDAR to detect walls more accu-
rately. This could be done using point clouds that give direct
depth information and can be used to detect planes. Plane
detection from point clouds is commonly approached through
model fitting. The first category of popular model fitting
approaches is Random Sample Consensus (RANSAC) [9]
[10]. A disadvantage of RANSAC is that when the number
of iterations is limited, the solution may not be optimal. It
relies on problem-specific parameters. In addition to that, using
this approach the solution cannot be obtained analytically,
which could be exploited when combining information of
multiple modalities. In order to find multiple surfaces with
RANSAC, the algorithm requires multiple runs and merging of
detected planes. Considering these fundamental limitations of
RANSAC approaches, this category is not further considered.
The second popular category of model fitting approaches is
based on the Hough Transform. This procedure is computa-
tionally very demanding, resulting in many adaptations of this
algorithm. The Probabilistic Hough Transform [11] and the
Adaptive Probabilistic Hough Transform [12] use a random
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selection of points from the point cloud instead of using
all points, whereas the Randomized Hough Transform [13]
uses an approach where randomly, three points are selected
from the point cloud. These methods depend heavily on the
choices of parameters, such as number of iterations or number
of selected points. Another approach is based on clustering,
such as the Depth Kernel-based Hough Transform (D-KHT).
First, an attempt is made to cluster the point cloud into
approximately co-planar clusters. This approach leads to an
analytical solution with a reduced computational demand.

In this paper, we introduce how to combine the point
cloud obtained from a LiDAR sensor and measurements from
a microphone array in order to improve the performance
of existing acoustic reflector detection methods. The planar
surfaces that are estimated from the point cloud are used to
reduce the influence of model mismatch, e.g., reflections from
horizontal reflectors such as floors and ceilings. Moreover, we
also propose a method to include the point cloud estimates
as a priori information for solving the acoustic problem more
robustly.

II. NOVEL ACOUSTICS-LIDAR REFLECTOR ESTIMATOR

We consider a smart loudspeaker system with a uniform
circular array (UCA) of radius r with M microphones and
a LiDAR sensor with a predefined Field of View (FOV) of
β◦

hor × β◦
ver. The coordinate system is defined such that the

center of the microphone array, the loudspeaker point source,
and the LiDAR sensor are at the origin. The angle α = 0◦

corresponds to the on-axis direction of the loudspeaker. The
LiDAR is oriented such that the center of its FOV is at 180◦.
The method applies to any room type, but we use the shoe-box
shaped room for ease of illustration.

First, the acoustic model and the inverse problem are stated.
Then, a method to include horizontal reflectors by detecting
horizontal planar surfaces from a LiDAR point cloud is given.
Finally, the detected vertical planar surfaces from the point
cloud are included as a priori information in the inverse
problem.

A. Acoustic Model and solution

For the acoustic system to detect the walls, we assume that
a discrete version of the received room impulse response from
the loudspeaker to the microphone array is accurately known,
denoted by h[n,m], with discrete time-sample index n ∈
{0, . . . , Nh−1} and microphone index m ∈ {0, . . . ,M−1}, as
well as the loudspeaker directivity and the microphone array
geometry. Let Nh denote the impulse response length. The
measurements are sampled in time at fs Hz. The direct path
of the loudspeaker is assumed to be removed from h in a
pre-processing stage. It is assumed that h consists of first-
order reflections due to the fact that only nearby reflectors are
considered.

The Mirror Image Source Method (MISM) is used as a
model to determine image source locations s[q,m], using a
radial sample index q ∈ {0, . . . , T − 1} on a grid in polar
coordinates with radial step size ∆R = vc

fs
and angular step

size by ∆α = 2π
M . The candidate locations are between

Rmin = Ra and Rmax = Tvc
fs

+ Ra, where Ra denotes the
UCA radius, vc the speed of sound and T the integer number
of radial grid points. s[q,m] defines a partial impulse response,
where the element s[q,m] = 1 if an image source is present
at index [q,m]. If an image source location is not present in
the discrete set, it should be assigned to the closest grid point
in the set.

1) Inverse problem: The problem can be posed as a linear
system of equations [8]. The candidate source positions for
each of the m angular directions, s(m) = [s[0,m], . . . , s[T −
1,m]]T , are concatenated to express the grid as

s = [[s(0)]T , ..., [s(M−1)]T ]T . (1)

The channel responses are arranged similarly, where h(m) ∈
RNh :

h = [[h(0)]T , ..., [h(M−1)]T ]T . (2)

The model is then posed as:

h = Φs+ n (3)

where Φ is defined by the known loudspeaker directivity and
array configuration [8] and n is defined as noise. Having
defined this linear system from Equation 3, it is possible to
solve for s. This is done by solving the minimization problem
from Equation 4, where λ||s||1 is introduced to promote spar-
sity. This inverse problem is computationally too expensive to
extend to 3D using a spherical array. Furthermore, a spherical
array is not feasible for practical loudspeaker design. Due
to directivity, the loudspeaker driver emits maximum energy
on-axis, making it challenging to detect reflectors in other
directions in a noisy scenario, as well as in presence of other
reflectors.

min
s

||Φs− h||22 + λ||s||1 (4)

2) From Image Source Locations to Planar Surface Equa-
tion: Once s is found, the next step is getting the planar sur-
face equation parameters. From the peaks in s, the correspond-
ing distance RMISM and angle αMISM are extracted. The plane
equation is described with the plane distance ρ and the plane
normal ν = [νx, νy, νz]. Since the plane is located exactly
halfway between the source and the image source, ρ = RMISM

2 ,
the plane normal values are ν = [cosαMISM, sinαMISM, 0].

B. Pre-processing for detected horizontal reflectors from the
point cloud

The model mismatch from non-vertical structures compli-
cates the recovery of walls. Given the location of a horizontal
reflector, i.e., a floor or a ceiling, it can be accounted for in pre-
processing by removing its response from h[n,m]. Using the
LiDAR camera and the D-KHT algorithm [14], the surfaces
within the LiDAR FOV are found. If a plane where the z-
component of the plane normal is non-zero is detected, its
contribution is eliminated from the acoustic response h[n,m].

There are two pieces of information known about these
horizontal reflectors. The first one is that the time of arrival is
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equal at all microphones in the array. Secondly, the distance
from the loudspeaker to the reflector is known from the LiDAR
measurements. This distance is converted to the expected time
delay for the impulse to arrive at the UCA. The time delay
cannot be used directly since delays from the loudspeaker
response need to be considered. Here, this is done by taking
the time difference from the peak of the direct path, which is
known from the configuration. From this, the expected sample
of the floor reflection is found.

The goal is to exploit all this information to eliminate this
reflection before employing the acoustic wall detection algo-
rithm. We do this by minimizing the following optimization
problem.

min
hhor

||h− IM ⊗ hhor||22

s.t. ||Lhhor||22 ≤ b
(5)

This optimization problem is constructed in such a way that
both pieces of information are incorporated. hhor is the re-
sponse from the horizontal reflector that is estimated. Multiple
reflectors can be estimated simultaneously. By using the Kro-
necker product with the identity matrix, it is ensured that the
estimated horizontal response is the same for all microphone
channels. The matrix L = diag(l) is a weighting matrix and b
is a threshold. This weighting matrix is constructed such that
the samples that lie far from the expected horizontal reflector
location sample p, have a high weight, to limit the response
of hhor outside the area where the reflector is detected.
The weighting factor scales with the squared distance to the
expected location, i.e., l[n] = |n − p|2. After minimizing the
problem from Equation 5, the estimated horizontal response
hhor is subtracted from each response h(m) as given in (6),
where the remainder is the wall response that is required, i.e.,

h
(m)
walls = h(m) − hhor. (6)

C. Including a priori information in the inverse problem

In addition to elimination of floor and ceiling reflections
from h, we can also use the LiDAR to include additional
a priori information on the positions of the image sources.
The LiDAR is positioned such that the direction where the
loudspeaker emits less energy due to its directivity, is covered
by its FOV. Now, first the plane detection from the point cloud
using the D-KHT is performed. The output of this algorithm
is a list of plane equations, consisting of the distance ρ and the
normal vector ν. From the normal ν, the angle in the xy-plane
at which the wall is located compared to the system is easily
recovered α = tan−1(

νy

νx
). The acoustic algorithm solves for

the image sources rather than the plane equation directly. The
angle αpc at which the plane from the point cloud is detected
corresponds to the angle of the image source. The distance
of an image source ρMISM corresponds to twice the distance
of the planar surface that corresponds to that image source,
RMISM = 2ρpc, where ρpc is the distance from the system to
the planar surface. Now the angle and the distance at which
an image source is expected, if the planar surface is indeed a
wall, are known. This is used as a prior in solving the inverse

problem from [8] in Equation 4, by including it as a constraint.
The optimization problem is then:

min
s

||Φs− hwalls||22 + λ||s||1

s.t. ||Ls||22 ≤ b.
(7)

Now, L is a diagonal matrix of size MT×MT . This matrix is
constructed by forming the vectors l(m), that are constructed
in a similar way as in subsection II-B. The vector l is the
combination of all vectors l(m), [[l(0)]T , ..., [l(M−1)]T ]T . If the
candidate location is the location that is found using the plane
detection from the point cloud, its entry is zero. The entries are
larger if the candidate location in the grid is further away from
the expected location from the point cloud. More specifically,
we set l[m,n] to l[m,n] = |n− npc|(1 + |m−mαpc |).

III. EXPERIMENTAL RESULTS

In this section the proposed methods are evaluated in
different scenarios. The loudspeaker is modelled as a directive
point source located at the origin where the front is positioned
at α = 0◦, i.e., in the positive horizontal direction. The LiDAR
sensor is also located in the origin, but its front is directed
towards the negative horizontal direction α = 180◦. We denote
its FOV by βhor × βver. A UCA containing M microphones
surrounds the loudspeaker and the LiDAR sensor. The set-up
of the co-located system is shown in Figure 1.

α

βhor
Ra

df

βver

Fig. 1. System setup. Left: Top view. Right: Side view.

A. Experiment 1 — Detection of a wall in presence of a floor

A significant ambiguity is introduced when reflections that
were not included in the model are present. The purpose of this
experiment is to show that the proposed method reduces this
ambiguity. The co-located system is placed in front of a wall
at an angle of α = 0◦ and at the distance R = 1 m. A floor is
introduced at varying distance df, as shown in Figure 2. The
loudspeaker is assumed to be omnidirectional and the LiDAR
FOV is now 50◦ × 70◦. This scenario is noiseless.

df

Rβver

Fig. 2. Side view of the set-up for Experiment 1. The co-located system is
placed at height df at a distance R = 1 m from a wall at angle α = 0◦.
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Fig. 3. Left: The detected distance R for the method of Zaccá [8] and the
proposed method at different floor heights. The ground truth is R = 1. Right:
The mean square error with the ground truth normal vector for Zaccá’s method
and the proposed method at different floor heights.

In Figure 3, the results of this experiment are shown. In the
first figure, the distance that is detected using either Zaccá’s
algorithm [8] or the proposed method is given. In the second
figure, the mean square error (MSE) of the plane normal is
given. From this simulation, what is seen is that using Zaccá’s
algorithm, the first arriving reflection is detected. When a
floor is present closer than the wall, a wall is detected at
this distance, where the angle is unpredictable. When the
floor is further away than the wall, the wall can be found
reliably. Using the proposed method, it is possible to eliminate
this effect. What is seen is that when the floor is within
the LiDAR sensor FOV, the detection can be done reliably.
Above a distance of 0.6 m, the floor gets below the LiDAR
sensor’s FOV and the same results as with Zaccá’s method
are achieved. The additional steps in the processing increases
the computational complexity. However, the steps are less
demanding than if the linear system would be extended to 3D
and the practical implications of a LiDAR sensor are smaller
than those of a spherical array.

B. Experiment 2 — Single wall scenario

The purpose of this experiment is to evaluate the perfor-
mance of the proposed method compared to the state-of-the-art
method [8], where specifically angles of 90◦ < α < 270◦ are
of interest. This is demonstrated with a single wall scenario.
This wall is placed at 0.5 m and is rotated around the co-
located system, as shown in Figure 4.

The field of view of the LiDAR is 70◦×50◦ and is centered
at 180◦. The loudspeaker directivity characteristic is given in
Figure 5. For simplicity, only magnitude scaling is used.

The LiDAR measurements are noiseless and the acoustic
SNR is varied from -9 dB to 21 dB. A Monte-Carlo simulation
of 100 runs is performed. In Figure 6a, the mean hitrate
of Zaccá’s method is given for each angle and for different
signal-to-noise ratio (SNR) values. The hitrate is 1 if a wall
is detected correctly and averaged over the runs. What can be
seen from this figure, is that it is challenging to detect a wall at
a low SNR, and that it becomes difficult as the angle increases
to 180◦. In Figure 6b, the mean hitrate, when the proposed
method is used, is given for each angle and for different SNR

α

βhor

Ra

R

Fig. 4. The setup used for experiment 2. The thick black line illustrates a
wall that is placed at different angles α around the system.
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Fig. 5. Directivity characteristic of the loudspeaker.

values. Here, a significant improvement is achieved for the
angles in the LiDAR sensor FOV, i.e., 120◦ and 180◦.

C. Experiment 3 — Scenario with windows

Using the LiDAR sensor, it is challenging to detect win-
dows. In this experiment, the consequence is shown in a
dual wall scenario. One of the reflectors is a window, i.e.,
its response is present in the RIR, but not in the point
cloud. Again, the configuration is rotated around the co-located
system as demonstrated in Figure 7.

The distance Rwindow = 0.6 m and the distance Rwall = 0.4
m. The FOV of the LiDAR is again 70◦×50◦ and is centered
at 180◦. The loudspeaker directivity from Figure 5 is used.

The LiDAR measurements are noiseless and the acoustic
SNR is varied from -9 dB to 20 dB. A Monte-Carlo simulation
of 100 runs is performed. In Figure 8, the mean hitrate of
Zaccá’s method is given for each angle and for different SNR
values. For a hitrate of 1, the wall or window is detected
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Fig. 6. Detection rate of a rotating wall around the co-located system. Left:
Zaccá’s method [8]. Right: Proposed method
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Fig. 7. The setup used for experiment 2. The thick black line illustrates a
wall that is placed at different angles α around the system. The blue line
represents a window at angle 90◦ with the wall.
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Fig. 8. Detection rate of a wall and a window at different angles using Zacca’s
method. Left: Wall detection accuracy. Right: Window detection accuracy.

correctly. The detectability of the wall remains similar to the
scenario in Figure 6a, for angles 0◦ < α < 120◦. Here, the
window is placed at an angle with a lower magnitude response
than the wall. Once the window is at an angle with a larger
magnitude response, the wall recovery degrades. Due to the
simultaneous detection, it can be more challenging to detect
the surface in the direction with a lower magnitude response,
since the detection relies on finding the maxima in s. Often,
two such maxima are detected next to each other for one image
source.

Now, the experiment is repeated with the proposed method.
The results are presented in Figure 9. The detection of the wall
improves at angles 120 − 240◦ with the proposed method,
while the detection of the window remains similar. At wall
angle 240◦, the hitrate improves, whereas the corresponding
window at 330◦ is less detectable. Again, this is due to the
simultaneous estimation; two maxima are detected next to each
other in s for one image source.

IV. CONCLUSIONS

The presented method exploits the information of the addi-
tional LiDAR sensor to improve the robustness and accuracy
of existing acoustic reflector detection methods. First, using
an omnidirectional model, it is demonstrated how detecting
a horizontal reflector from the point cloud enables us to
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Fig. 9. Detection rate of a wall and a window at different angles using the
proposed method. Left: Wall detection accuracy. Right: Window detection
accuracy.

eliminate its negative effect. Then, the detection of vertical
planar surfaces from the point cloud is included in the acoustic
inverse problem as a priori information. It was shown that
combining the two sensing modalities leads to a better perfor-
mance of surface detection in low-energy directions.
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