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Abstract — We present a Krylov subspace pro-
jection framework to model electromagnetic wave
propagation in unbounded domains. The extension
to infinity is modeled via an optimal complex scal-
ing method and we show that stable time-domain
reduced-order models can be efficiently computed
via a stability-correction procedure in conjunction
with a Lanczos-type reduction algorithm. We show
that dominant open resonant modes can be deter-
mined via the Lanczos algorithm and illustrate the
performance of our technique through a number of
numerical examples for two- and three-dimensional
configurations.

1 INTRODUCTION

In this paper we present a Krylov subspace pro-
jection framework to model electromagnetic wave
propagation on unbounded domains. Krylov meth-
ods are known to exhibit fast convergence for lossy
diffusion dominated problems [1] and may therefore
show excellent convergence behavior for open wave
propagation problems as well. Loosely speaking,
the reason is that open wave field problems are in-
herently lossy, because infinity acts as an absorber.

To simulate the extension to infinity, the Per-
fectly Matched Layer (PML) technique [2] is nowa-
days the method of choice in local (finite-difference
or finite elements) solution methods for Maxwell’s
equations. In this technique, the spatial coordi-
nates are stretched inside a layer (the PML layer)
that completely surrounds the computational do-
main of interest. Stretching of the coordinates is
achieved via the introduction of so-called stretch-
ing functions in Maxwell’s equations [3]. These
functions are frequency dependent in general and
consequently waves of all frequencies are absorbed
by the PML layer without any reflection.

Within a Krylov subspace model-order reduc-
tion framework, the frequency dependence of the
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stretching functions leads to nonlinear eigenvalue
problems in two or three spatial dimensions. This
obviously hinders the efficiency of Krylov reduc-
tion methods, since nonlinear eigenproblems are
much more difficult to solve than linear ones. As
a solution to this problem, we can simply fix
the frequency of the PML stretching functions
to a frequency ω̃, say. The PML technique of
Berenger then turns into the so-called complex scal-
ing method [4], [5], which was introduced already
in the 1970s and has been applied in acoustics,
RF MEMS simulations, and quantum mechanics,
to model resonances and resonant field behavior of
open systems [6] – [8].

A drawback of fixing the PML frequency is
that the PML only performs well for frequen-
cies in a neighborhood of ω̃. This problem is
resolved in [9], where a global complex scaling
method is proposed which is optimal over an en-
tire frequency band of interest and allows for time-
domain field simulations as well (see [10] for an ex-
tension of this complex-scaling approach). More
precisely, by applying optimal complex scaling in
combination with a stability-correction procedure
outlined in [9], stable time-domain or conjugate-
symmetric frequency-domain field approximations
on unbounded domains can obtained. Further-
more, the semidiscrete wave operators are essen-
tially complex-symmetric and therefore enable us
to efficiently compute time- or frequency-domain
reduced-order models via a Lanczos-type three-
term reduction algorithm. In Section 2, we briefly
review the construction of these models and in Sec-
tion 3 we illustrate the performance of our reduc-
tion method through a number of numerical exam-
ples. The conclusions are presented in Section 4
along with a brief discussion on possible extensions
of the proposed model-reduction solution method-
ology.

2 REDUCED-ORDER MODELS

To simulate electromagnetic wave propagation on
unbounded domains, we start with the first-order
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Figure 1: A square dielectric object with a relative per-
mittivity of εr = 4 embedded in a vacuum background
domain. Both the source (asterisk) and the receiver
(triangle) are located inside the object.

Maxwell system

(D +M∂t)F = −Q′, (1)

where the spatial differential operator D contains
the curl operators in Maxwell’s equations andM is
a medium matrix containing the permittivity and
permeability values of the various materials present
in our domain of interest. Furthermore, the compo-
nents of the electric and magnetic field strength are
contained in the field vector F , while the compo-
nents of the external current densities are contained
in the source vector Q′. From this moment on, we
only consider external sources for which the time
dependence can be factored out, that is, we con-
sider source vectors of the form Q′ = w(t)Q, where
w(t) is the source wavelet that vanishes for t < 0
and Q is a time-independent vector.

Discretizing the above Maxwell system in space
and applying optimal complex scaling to simulate
the extension to infinity, the semidiscrete state-
space system

(D + M∂t) f̃ = −w(t)q (2)

is obtained, where D, M, f̃, and q denote the dis-
crete counterparts of D,M, F , and Q, respectively.
By premultiplying Eq. (2) by the inverse of the (di-
agonal) medium matrix, we obtain

(A + I∂t) f̃ = −w(t)M−1q, (3)

where I is the identity matrix and where we have
introduced the system matrix A = M−1D. We note
that the entries of matrix D containing the step
sizes of the PML are complex-valued and matrix A
is unstable (matrix A has eigenvalues with positive
and negative real parts) due to the application of
the complex scaling method. However, by apply-
ing the stability-correction procedure presented in
[9], stable-time domain field approximations can be
computed using

f(t) = −w(t) ∗ 2η(t)Re
[
η(A) exp(−At)M−1q

]
, (4)

Figure 2: Magnetic field strength at the receiver loca-
tion as a function of time. Solid line: response as com-
puted by FDTD. Dashed line: reduced-order model of
order 1500.

where the asterisk denotes convolution in time and
η(z) is the complex Heaviside unit step function
(η(z) = 1 for Re(z) > 0 and η(z) = 0 for Re(z) <
0).

Direct evaluation of Eq. (4) is not feasible, how-
ever, since the order n of the system matrix A is
too large especially for three-dimensional problems.
Fortunately, matrix A satisfies the symmetry rela-
tion

〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ Cn, (5)

where 〈·, ·〉 is a bilinear form given by 〈x, y〉 =
yTWMx and W is a step size matrix containing the
step sizes of the spatial grid. The free-field La-
grangian Lfree is induced by this bilinear form [11],
that is, 1

2 〈f, f〉 approximates

Lfree =
1

2

∫
x∈D

ε|E|2 dV − 1

2

∫
x∈D

µ|H|2 dV, (6)

where D is our computational domain of interest.
By exploiting the symmetry relation of Eq. (5),

we can generate reduced-order models for the elec-
tromagnetic field via a three-term Lanczos-type re-
duction algorithm [9]. This algorithm generates a
basis of the Krylov subspace

Km = span{M−1q,AM−1q, ...,Am−1M−1q} (7)

and after m� n iterations we have the summariz-
ing equation

AVm = VmHm + rmeTm, (8)

where the n-by-m matrix Vm has the m Lanczos
basis vectors vi as its columns, Hm is a tridiago-
nal m-by-m matrix containing the Lanczos recur-
rence coefficients, rm is a residual vector, and em
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Figure 3: Magnetic field strength of a 2π open reso-
nant mode in and around the square dielectric object
of Figure 1.

Figure 4: Magnetic field strength of a 5π open reso-
nant mode in and around the square dielectric object
of Figure 1.

is the mth column of the m-by-m identity matrix.
We note that in our implementation of the Lanc-
zos algorithm, all basis vectors have unit 2-norm
(‖vi‖ = 1) and are “orthogonal” with respect to
the bilinear form introduced above.

Based on the Lanczos decomposition of Eq. (8),
we can now construct the reduced-order models

fm(t) = −w(t)∗2nsη(t)Re [Vmη(Hm) exp(−Hmt)e1] ,
(9)

where ns = ‖M−1q‖. To compute these models,
only matrix functions of matrix Hm need to be eval-
uated. The order of this matrix is much smaller
than the order of the system matrix A and ma-
trix Hm is tridiagonal as well. Finally, we remark
that dominant open resonant modes can also be ex-
tracted from the Lanczos decomposition of Eq. (8)
as will be illustrated in Section 3.

3 NUMERICAL RESULTS

As a first example, we consider H-polarized fields
in a two-dimensional configuration that is invariant
in the z-direction. The configuration consists of a
square dielectric object with a relative permittivity
of εr = 4 and the object is embedded in a vacuum
background domain. Furthermore, the side length
of the square is 50 µm and both the source (aster-
isk) and the receiver (triangle) are located inside
the object (see Figure 1). The source wavelet is
a derivative of a Gaussian and its spectrum has
a maximum at a wavelength λpeak = 94 µm in
vacuum. After discretizing this configuration in

space, a semidiscrete Maxwell system is obtained
with about 37000 time-dependent unknowns.

In Figure 2 we show the magnetic field response
at the receiver location. The solid line signifies the
response as computed by FDTD, while the dashed
line is the magnetic field reduced-order model of or-
der 1500. We observe that this reduced-order model
essentially overlaps with the FDTD result on the
time interval of interest and its order is about 24.5
times smaller than the order of the original unre-
duced system.

Using the Lanczos decomposition of Eq. (8), we
can also determine the open resonant modes that
are excited by the external source. In Figures 3
and 4 we show the magnetic field component of
two of these modes. Both modes have converged
and contribute to the time-domain signal shown in
Figure 2. Other higher order modes can be deter-
mined as well, of course, but their retrieval may
require a larger number of Lanczos iterations.

As a second example, we compute dominant reso-
nant modes for the three-dimensional configuration
shown in Figure 5. This configuration consists of
an electric dipole located in the vicinity of a di-
electric box with side lengths equal to 50 µm. The
relative permittivity of the box is set to εr = 4 and
the box is again embedded in vacuum. After dis-
cretizing this configuration in space, the resulting
semidiscrete Maxwell system has an order of about
8.4 million. Using the Lanczos algorithm, we can
now compute the dominant resonant modes that
are excited by the dipole. Figure 6 shows the imag-
inary part of the x-component of the electric field
strength of one of these modes and was obtained
from the Lanczos algorithm after 10000 iterations.
Clearly, the mode shows a 5π resonant field pattern
in the y- and z-directions and only a fundamental
resonance pattern in the x-direction, which is the
direction in which the electric dipole is oriented.

4 CONCLUSIONS

In this paper we have presented a Krylov subspace
reduction method to simulate electromagnetic wave
propagation on unbounded domains. To simulate
the extension to infinity, we have implemented an
optimal complex scaling method and stable time-
domain field approximations have been computed
via a stability-correction procedure in conjunction
with a Lanczos-type reduction algorithm. The algo-
rithm allows for the efficient computation of electro-
magnetic wave fields and dominant resonant modes
that are excited by the external source can be de-
termined as well.

In this paper we have restricted ourselves to in-
stantaneously reacting media, but our reduction
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Figure 5: A square dielectric box with a relative per-
mittivity of εr = 4 embedded in a vacuum background
domain. The side length of the box is 50 µm and an
x-directed electric dipole is located in the xz-plane in
the vicinity of the box.

Figure 6: Imaginary part of the x-component of the
electric field strength of an open resonant mode as ex-
cited by an x-directed dipole located in the xz-plane
just outside a three-dimensional box with a relative per-
mittivity of εr = 4.

approach can be extended to dispersive media as
well [12]. Furthermore, since the stability-corrected
wave function is a nonentire function of the Maxwell
system matrix, we expect that rational Krylov
methods may converge much faster than standard
Krylov methods [13], since the wave function is then
approximated by a rational function instead of a
polynomial as in a standard Krylov method. Fu-
ture work will therefore focus on developing effec-
tive rational Krylov methods for wave propagation
problems on unbounded domains.
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