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Abstract

Atrial fibrillation (AF) is the most common arrhythmia.
Although the exact cause is unclear, electropathology of
atrial tissue is one contributing factor. Electropathologi-
cal characteristics derived from intra-operative epicardial
measurements, such as conduction block (CB), can be used
to assess the severity of AF. In sinus rhythm, however, this
parameter does not indicate significant difference between
different development stages of AF, such as paroxysmal
and persistent AF. Therefore, we propose a methodology to
improve AF severity detection using intra-operative elec-
trograms. We propose a model that describes the spatial
diversity of atrial potential waveforms during a single beat
on the multi-channel electrograms. Based on this model,
we derive two novel features. During sinus rhythm, we
used 334 beats from patients with a history of PAF or PsAF.
Using a random forest classifier, we achieved 80.38% clas-
sification accuracy, while classification based on the CB
leads to an accuracy of 57.22%.

1. Introduction

Atrial fibrillation (AF) is the most sustained arrhythmia.
Typically, AF is classified into four categories based on
the duration of an episode: paroxysmal, persistent, long-
standing persistent, and permanent AF [1]. In this pa-
per, we focus, in particular, on the classification between
paroxysmal AF (PAF) and persistent AF (PsAF) to investi-
gate the development stages of AF. Moreover, AF is a pro-
gressive disease and the success rate of the most common
treatment, ablation therapy, highly depends on the severity
of AF [2, 3]. Understanding how rank-related features of
atrial potentials can differ between different stages of AF
is important.
Previously, we developed a method which classifies PAF
and PsAF using a multi-channel electrocardiogram (ECG)
[4]. In this work, we go one step beyond from the sur-
face of the body (i.e., from ECGs) to the surface of the
heart (i.e., to electrograms) to gain more insights into the

electropathology of AF. Typically, classification based on
intra-operative epicardial measurements is done using fea-
tures like conduction block (CB). However, this parame-
ter does not clearly differentiate PAF and PsAF in sinus
rhythm (SR) [5,6]. Van der Does et al. showed that among
all locations, only at Bachmann’s bundle (BB) there is a
higher number of continues conduction delay and block
(cCDCB) line (p-value=0.040), though [5]. However, the
CB and cCDCB rely on an estimate of the local activation
time (LAT). On the other hand, from the potential mor-
phological viewpoint, Ye et al. demonstrated that the R/S
ratio of single potentials (SPs) might be a useful charac-
teristic for investigating the development stages of AF [7].
Therefore, we propose in this paper a complimentary fea-
ture, related to the morphology of the signal, based on the
underlying idea that AF progression can be related to vari-
ations in the atrial potential waveforms (APW).
2. Materials and Method

2.1. Data and pre-processing

In this study, patients with normal sinus rhythm (NSR)
who had a history of PAF or PsAF were included. We
used multi-site high-density electrograms (EGMs) mea-
sured during open-heart surgery, at a sample rate of 1 kHz.
One ECG is measured simultaneously with the EGMs (188
electrodes) to detect the R peak location for heartbeat seg-
mentation. Using a wavelet-based ECG delineator tech-
nique [8], we segmented the atrial activity of each EGM
to concentrate on the atrial activity (AA). We used a fixed
window with a length of 180 ms, between 240 ms and 60
ms before the R peak. We used 3-6 beats per patient from
9 PAF patients and 14 PsAF patients from three atrial re-
gions. Altogether we included 110 beats from PAF pa-
tients and 224 beats from PsAF patients. More details on
the mapping scheme and atrial regions are explained in [6].

2.2. Signal model

The heart’s electrical activity is initiated by the sinoatrial
(SA) node and propagates across the atrium. We assume



that in NSR, all cells generate the same action potential. In
that case, each electrode measures the attenuated-delayed
version of the same reference AA. For the mth electrode
this can be modelled as

ym(t) = ams(t) ∗ δ(t− τm) (1)

where s(t) is the reference AA, am models the positive
real attenuation and δ(t − τm) is the delay of the AA at
electrode m compared to the reference AA, and ∗ is the
convolution operator. In the frequency domain, Eq. (1)
can be written as

ỹm(ω) =

∫ +∞

−∞
ym(t)e−jωtdt = ams̃(ω)e−jωτm (2)

where (̃.) denotes the frequency domain. The matrix Ỹ ∈
CM×Ω is constructed by stacking all the AAs for all elec-
trodes and frequencies, where m ∈ {1, 2, · · · ,M} is the
number of electrodes and ω ∈ {1, 2, · · · ,Ω} denotes the
angular frequency index. Let us denote the absolute value
of ỹm by

|ỹm| = am|s̃| (3)

then we define B̃ ∈ R M×Ω
ρ as a matrix with the element-

wise absolute values of ỹm = [ỹm(1), ỹm(2), · · · , ỹm(Ω)],
where ρ is the rank of matrix B̃. In the case that the
AA shows little variation, i.e., the action potentials are the
same up to a delay and each electrode only measures the
AA from the atrial site beneath it, B̃ is a rank-1 matrix.
In case there is more variation on the atrial APWs, the AA
will be different on some electrodes and the rank of B̃ will
be higher. Thus, when there is variation across the atrial
regions resulting in ρ ≤ M different APWs, B̃ will be a
rank-ρ matrix. In this work, we assume that there are a
limited number of different APWs. Therefore, B̃ is a low-
rank matrix and we can decompose it into a sum of rank-1
matrices. Using the singular value decomposition (SVD),
matrix B̃ is factorized as

B̃ = UΣV ∗ =

U
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where U and V are orthogonal matrices, Σ is a non-
negative diagonal matrix that contains the singular values
of matrix B̃ in a descending order,(∗) denotes the Hermi-
tion operator. The rank is determined by the number of
non-zero singular values of B̃. However, in practice, the
measurements are rather noisy and we need to divide the

data matrix into signal subspace and noise subspace and
determine the rank of the signal subspace. Given ρ, we
can truncate the SVD to its first ρ terms and estimate the
least square optimal B̃ matrix that is

B̂ = URΣρ×ρV
∗
R. (5)

where matrices UR and VR are the range spaces of U and
V , respectively, and Σρ×ρ is the truncated version of Σ
to its first ρ singular values . The rank of B̃ thus directly
says something about the variation in AA and thus about
the severity of AF. However, rank estimation with noisy
and limited data records is rather challenging. Therefore,
we propose two rank-related features that can be used to
discriminate between PAF and PsAF.

2.3. Proposed features

We can measure the amount of variance captured by
each singular value by computing the norm of the rank-
1 reconstruction divided by the norm of the whole data
matrix. This ratio shows the importance of each singu-
lar value in the reconstruction. Thus, we propose feature
I1 based on the overall variance captured by the first ρ sin-
gular values such that these first ρ singular values capture
about 80% data variance. We choose the variance thresh-
old of 80%, as this value achieved the highest classification
accuracy on our dataset. Feature I1 is then given by

I1 = argmin
ρ1
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∗
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where ui and vi are the ith left and right singular vectors
of B̃. The higher I1, the more diverse the atrial potential
morphologies in the B̃ matrix.

With the second feature, we focus on the relative impor-
tance of the singular values in the data matrix reconstruc-
tion. We define the ratio between the consecutive singular
values σi and σi+1 as

ϱi =
σi

σi+1
. (7)

The rate of change as a function of i in the ϱ ratio is re-
lated to the relative importance of the singular values. It
means that when the rate of change is low, increasing the
rank for the reconstruction will not change the variance of
the data considerably. Therefore, the singular value can
be considered to belong to the noise subspace. In Fig 1,



the ϱ ratio is shown. The ϱ ratio for PAF patients shows a
monotonic descending pattern but not in PsAF for the first
components. Instead, there is a ratio increase on the third
ratio (σ3 to σ4) demonstrating that the relative importance
of σ3 is much higher than that of σ4. Moreover, looking at
the ϱ ratios from the third ratio onward, PAF patients and
PsAF patients show the same pattern with different rates
of change. Taking these two points into account, we pro-
pose to take the first three singular value ratios (ϱ1, ϱ2 and
ϱ3) as features to extract the dominant components. Fur-
thermore, to quantify the rate of change of ϱi as a function
of i, we propose a feature that captures the bending point
around the plateau as

I2 = argmin
i

|(|log (ϱi+1)− log (ϱi)| − ϵ)|

s.t. 1 ≤ ϱi+1 ≤ 1.5.
(8)

where ϵ was set to 0.1. Similarly to the variance thresh-
old parameter, this parameter was optimized based on the
whole dataset in order to achieve maximal accuracy. I2
approximates the second derivative between the consecu-
tive singular values in the log domain. Indeed, a higher I2
demonstrates the lower rate of change in the ϱ ratio which
shows a higher number of important subspaces, i.e higher
number of different APWs in the signal subspace.

3. Results

This section presents a comparison of the performance
of the proposed features with the reference features (CB).
From a total of 334 heartbeats, we used the five proposed
features, namely I1, I2, ϱ1, ϱ2, ϱ3. Fig 2.A shows the box
plots of the proposed I1 and I2 features. Comparing I1
and I2 between PAF and PsAF, I1 and I2 are larger for
PsAF than for PAF. It shows that a higher variation of
APWs across the atrial regions is present in PsAF than in

Figure 1. The average of the first 20 singular value ratios
across all patients and all beats in PAF and PsAF

Figure 2. Box plots of the features, A) proposed features,
B) state-of-the-art features.

PAF. We compared the classification performance of the
proposed features with the electropathological character-
istics based on the CB. These parameters are calculated
based on the LAT. The LAT is defined as the steepest de-
flection of the electrogram. The CB is defined as ∆LAT
of adjacent electrodes ≥ 12ms. Comparing CB between
PAF and PsAF in Fig 2.B , there is no considerable dif-
ference between these two groups. Moreover, we use two
classifiers to evaluate the performance of the proposed fea-
tures. First, a support vector machine (SVM) with radial
basis function (RBF) kernel function and kernel parame-
ter σ = 1.5 has been employed. The parameter has been
chosen empirically based on our dataset. Second, a ran-
dom forest (RF), an ensemble method, has been employed
with a bagged ensemble of 30 classification trees. For val-
idation, we used a 5-fold cross-validation approach on 334
heartbeats. Table 1(green rows) shows the performance
of the classifiers on the proposed features. To investigate
the importance of each feature, we trained the classifiers
using features separately. Using all the proposed features
(i.e., I1, I2, ϱ1, ϱ2, ϱ3), we achieved 80.38% accuracy with
the RF classifier, while CB could reach the accuracy of
57.22% with an SVM classifier. The proposed features im-
prove the classification accuracy between PAF and PsAF.
Furthermore, using all the proposed features, RF slightly

Table 1. The performance of the SVM and RF classifiers
on the features

aaaaaaaaaaaa
Features

Classifiers

RF SVM

CB 53.97 57.22
I1 76.91 76.11
I2 73.16 74.03
I2, ϱ1, ϱ2, ϱ3 77.56 76.88
I1, I2, ϱ1, ϱ2, ϱ3 80.38 78.97



outperforms SVM in PAF and PsAF classification.

4. Discussion
This paper proposes rank-related features to discrimi-

nate between PAF and PsAF. The rank estimation problem
has been addressed in many studies, Minimum descrip-
tion length (MDL) [9] and Aikaike’s information criterion
(AIC) [10] being two well-known methods in this context.
These techniques, however, assume that the variance of the
sensor self-noise for all sensors are the same, which is not
the case in our database. Therefore, we compared our re-
sults with two relevant methods developed by van der Veen
et al. and Koutrouvelis et al. in [11] and [12], respectively.
Koutrouvelis et al. found the scree point based on an ap-
proximation of the second derivative between the consec-
utive eigenvalues. Van der Veen et al. proposed a method
to determine a rank threshold for counting the number of
sources using the covariance matrix. Our preliminary com-
parison show that the I2 developed in this paper slightly
outperforms the methods introduced in [11] and[12]. Note
that a few parameters that were used to calculate our fea-
tures, such as the variance threshold in Eq. (6), were op-
timized on the full available dataset. Future work should
investigate whether our parameter settings generalize well
to an independent dataset and hence can maintain classifi-
cation accuracy.

5. Conclusion

This study proposed a method for the classification be-
tween patients with PAF or PsAF using intra-operative
EGMs during the sinus rhythm. The features reflect the
differences in the degree of electropathology between the
PAF and PsAF patients. We quantified the degree of elec-
tropathology using features related to the rank of the ma-
trix containing the absolute frequency spectrum of the
EGMs measured at each electrode. Feeding an RF clas-
sifier with the proposed features, we achieved 80.38% ac-
curacy for the classification between PAF and PsAF. Our
future work will aim to further investigate the relation-
ship between APW morphology and the different stages
of atrial fibrillation.
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