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Abstract

Inspection of local atrial activity using atrial electro-
grams (EGMs) is important to determine the arrhythmo-
genic substrate underlying arrhythmias such as atrial fib-
rillation (AF). During AF, the atrial activity (AA) is often
distorted by ventricular activity (VA). An effective means to
remove this VA is to use a bipolar electrode configuration.
However, this configuration distorts the AA as well.

In this paper, AA estimation is formulated as a beam-
forming problem, common in the field of array signal pro-
cessing. We propose two different beamformers for AA
estimation. Simulations are done with synthetically gen-
erated EGMs containing VA and various degrees of AF.
Compared to the standard bipolar configuration, both the
proposed estimators lead to significantly less distortion on
the atrial component and a better removal of the ventric-
ular component for scenarios with a relatively low degree
of AF. The current signal model is, however, less suitable
for scenarios with a higher degree of AF.

1. Introduction

Atrial fibrillation (AF) is the most common heart rhythm
disorder. It increases the risk of heart failures and strokes
and affects about 1–2% of the population [1]. The exact
underlying mechanism of this disorder is still unknown.
To gain knowledge on its origin, the heart muscle activity
can be measured during open heart surgery using multiple
electrodes, forming an atrial electrogram (EGM) [2].

These EGMs mostly consist of local atrial activity (AA),
but they will be distorted with far-field ventricular activity
(VA) as well. During sinus rhythm (SR) this generally is
not a problem, because the AA and VA are temporally sep-
arated. However, during AF the AA and VA might over-
lap, resulting in EGMs that are harder to interpret. Bipolar
electrode (BE) configurations, see e.g., [3], are often used
to overcome this issue. However, this configuration results
in direction dependent distortions on the AA as well.

The BE is also known as a differential beamformer from

the field of array processing, see e.g., [4]. Although the
BE only uses two electrodes, it is expected that using more
than two electrodes and using more complex beamformer
weights might lead to better results regarding the preserva-
tion of the AA and cancellation of the VA.

To get more insight on the possibilities of estimating the
atrial component from EGMs, we make in this paper use
of concepts from the field of array processing. We will for-
mulate AA estimation as a beamforming problem and de-
rive several beamformers for estimating the AA, based on
various signal model assumptions. The bipolar electrode
configuration follows as a special case.

2. Signal model and problem formulation

Let Xm[t] denote an EGM measured at electrode m ∈
{1, ...,M} and at time t, which is assumed to consist of
three additive stochastic processes, that is,

Xm[t] = Sa,m[t] + Sv,m[t] +Nm[t], (1)

where Sa,m[t] and Sv,m[t] are the processes of the atrial
and the ventricular signal components respectively. Fur-
ther, Nm[t] is the noise process, which models the sensor
self-noise and is considered to be a zero-mean white pro-
cess with power spectral density (PSD) σ2

n. The three pro-
cesses are assumed to be mutually independent.

Furthermore, it is assumed that the stochastic atrial and
ventricular components as observed at any electrode m can
be modeled as Sa,m[t] = (Sa ∗ am) [t] and Sv,m[t] =
(Sv ∗ vm) [t] with ∗ being the temporal convolution. Here
Sa[t] and Sv[t] are the atrial and ventricular sources and
am[t] and vm[t] are the impulse responses that model how
the stereotypical sources Sa[t] and Sv[t] propagate from
their (virtual) source locations to electrode m.

Notice that this thus implies that we assume that ev-
ery electrode m observes the same atrial and ventricu-
lar sources Sa[t] and Sv[t], up to an electrode dependent
convolution with the spatial impulse responses am[t] and
vm[t], respectively. Altogether, a realization of Xm[t] is
then given by

xm[t] = (sa,t ∗ am)[t] + (sv,t ∗ vm)[t] + nm[t]. (2)



We denote stochastic processes with uppercase symbols
and their realizations with the corresponding lowercase
symbols. Further, matrices and vectors are boldfaced.

When transforming Eq. (2) to the Fourier domain per
time frame k and using a stacked vector notation across all
M electrodes, we get,

x(k, f) = sa(k, f)a(k, f) + sv(k, f)v(k, f) + n(k, f),
(3)

with k and f the time frame and frequency band index, re-
spectively, and where x ∈ CM . As all processing will be
done per k and f , we will from now on neglect the indices
k and f for notational convenience. The symbols sa and
sv denote the Fourier transforms of the atrial and ventric-
ular sources, a and v denote the Fourier transforms of the
aforementioned atrial and ventricular impulse responses,
called the atrial and ventricular transfer functions, ATF and
VTF respectively, and n denotes the vector containing the
remaining noise.

The goal is to estimate the atrial component sa = saa.
We do this by first estimating the ATF a and then deriv-
ing a beamformer w such that ŝa = wHx with (·)H being
the Hermitian operator. Using W = waH, we obtain an
estimate for all electrodes, that is,

ŝa = WHx. (4)

3. Transfer function estimation

Estimating the ATF and VTF requires some more in-
sight into the signal model. Similar to Eq. (3), the random
processes in the Fourier domain are given by

X = Sa + Sv +N. (5)

The spatial cross-correlation matrix is defined as RX =
E
[
XXH], which simplifies due to the assumed mutually

independence of the AA, the VA and the noise, into

RX = RA +RV +RN. (6)

The noise cross-correlation matrix is given by RN = σ2
nI,

with identity matrix I, due to the fact that the noise is as-
sumed to be uncorrelated across electrodes, but equal in
power. The atrial cross-correlation matrix is given by

RA = E
[
SaS

H
a

]
= E

[
Saaa

HSH
a

]
= σ2

aaa
H, (7)

with σ2
a the PSD of Sa. Similarly, we can write RV =

σ2
vvv

H, with σ2
v the ventricular PSD. Per frequency band

f , both the atrial and the ventricular cross-correlation ma-
trices are thus assumed to be rank-1.

3.1. Ventricular transfer function

The ventricular signal component originates from rela-
tively far away and is received instantaneously at the dif-
ferent electrodes, implying that the phase differences in-
side the VTF are negligible and the magnitude differences

are small. The first candidate estimate of the VTF will
therefore be a normalized all-ones vector, i.e.,

v̂1 =
1√
M

1, (8)

with all-ones vector 1. We could also try to make a better
estimate of v by looking at the eigenvectors of RX and
selecting the one closest to the all-ones vector. The eigen-
value decomposition of RX is given by RXU = UΛ,
where U contains the eigenvectors as its columns and
where Λ is a diagonal matrix containing the eigenvalues.
Because RX is Hermitian, U is a unitary matrix, that is
U−1 = UH. This results in RX = UΛUH. We assume
that the VTF is given by one of the columns of U. This
eigenvector is therefore expected to be relatively similar to
the all-ones vector. The second candidate estimate of the
VTF is therefore obtained by the following maximization

v̂2 = argmaxUH1. (9)

This estimate of the VTF allows to take small variations in
magnitude differences between the ventricular components
as received by the different electrodes into account.

3.2. Atrial transfer function

The interfering ventricular and noise cross-correlation
matrices RV and RN can then be used to obtain an es-
timate of RA. To do so, we can use the covariance
whitening method [5], which uses the interfering cross-
correlation matrices to pre-whiten the noisy RX.

Pre-whitening can be achieved by applying the general-
ized eigenvalue decomposition (GEVD) to the matrix pen-
cils (RX, RV +RN) or (RA, RV +RN), where RX

can be determined from the data itself, RV and RN have
been composed using the assumptions in the previous sub-
section and RA is to be determined. Starting with the de-
composition of the second matrix pencil, a non-singular
matrix U and diagonal matrix Λ can be found that con-
form to the following two equations,

UHRAU = Λ and UH (RV +RN)U = I, (10)

where U and Λ contain the generalized eigenvectors and
eigenvalues. Without loss of generality, we assume the
generalized eigenvalues are sorted from large to small.
With Q = U−H, the two equations can be rewritten into

RA = QΛQH and RV +RN = QQH. (11)

Summing these two expressions gives

RX = Q (Λ+ I)QH, (12)

which can be transformed back into

UHRXU = Λ+ I. (13)



From this it follows that the GEVD of either of the two ma-
trix pencils gives the same generalized eigenvectors. Pre-
whitening can thus be achieved using the GEVD. However,
we only need the ATF a. Comparing RA = QΛQH with
RA = σ2

aaa
H shows that under the current signal model

assumptions, only the first value of the diagonal of Λ is
non-zero and that the ATF should therefore be captured
in the first column of Q with a scalar ambiguity. Notice
that this is a result of the assumption that RA has rank-
1. We can also calculate Q as the left eigenvectors of
(RV +RN)

−1
RX.

4. Atrial signal estimation

With the interfering cross-correlation matrices and the
ATF and VTF known, it is possible to derive the beam-
former W to estimate the atrial signal source sa and there-
fore the atrial signal component sa at each electrode m.

4.1. Extended bipolar electrode

The BE can be interpreted as a beamformer for M = 2
with w = [1, −1]H. This can be extended to M elec-
trodes as a subtraction of the mean of all electrodes from
each electrode m. This results in the beamformer matrix
W = I − 1

M 11H, which can be interpreted as a filter that
estimates the ventricular component using the VTF v̂1 and
subtracts that from the EGM. Extending this to using ei-
ther VTF estimate, this gives the following extended bipo-
lar electrode (EBE) beamformer matrix,

WEBE = I− vvH, (14)

where we assume that v is normalized to have unit norm.
The BE results as a special case of the expression in Eq.

(14) when using M = 2 electrodes in combination with
the VTF estimate v̂1 for v.

4.2. MVDR beamformer

A well known beamformer from the field of array pro-
cessing is the minimum variance distortionless response
(MVDR) beamformer, see e.g., [6], derived from the fol-
lowing minimization problem,

min
w

wH (RV +RN)w

s.t. wHa = 1.
(15)

This formulation can be solved by minimizing the La-
grangian, resulting in the following beamformer matrix,

WMVDR =

(
1 + σ2

n/σ
2
v

)
aaH −

(
vHa

)
vaH

1 + σ2
n/σ

2
v − (vHa) (aHv)

, (16)

where the PSD fraction σ2
n/σ

2
v is typically small and where

v and a are assumed to be normalized to have unit norm.

5. Simulation results

In this section we evaluate and compare the presented
estimators for AA extraction with the standard BE config-
uration. As the true AA is unknown for clinical data, we
perform a comparison based on simulated EGM data and
quantify the results using instrumental quality metrics.

5.1. Data set

The simulated EGMs are composed as described by Sun
et al. in [7]. Similarly, we simulate EGMs with and with-
out AF with a sampling frequency of Fs = 1 kHz and a
length of T = 5 s. The data is split into 500 time frames
of 50ms overlapping 50%. We simulate an array of 5 × 5
electrodes, thus M = 25, on a regular grid of 90× 90 sim-
ulated cells with a cell-to-cell distance of 200 µm. More
details on the tissue modeling are given in [7]. The model
simulates AF by adding multiple focal sources and by in-
serting areas of badly conducting tissue. With this simu-
lated data, the atrial and ventricular activity are separately
available.

We will consider one data set without AF, consisting of
normal SR, and three data sets with an increasing degree
of AF by raising the number of focal sources and inserting
more areas of badly conducting tissue. All EGMs have
been degraded with sensor self noise at an SNR of 20 dB.

5.2. Error measure

To quantify the estimation errors on the AA and the
amount of residual VA, we apply the filters, derived us-
ing the full EGMs x, to the available separate atrial and
ventricular components, that is ŝa = WHsa and ŝv =
WHsv . Then we calculate the atrial root-mean-square er-
ror (ARMSE) and the ventricular residual energy (VRE)
with the time domain versions of those two estimates as

ARMSE = ∥ŝa[t]− sa[t]∥2 and VRE = ∥ŝv[t]∥2 .
(17)

For both metrics it holds that the lower the value, the better.

5.3. Sinus rhythm

Fig. 1a shows the results in terms of VRE versus
ARMSE for the reference method BE, and the two pro-
posed methods EBE and MVDR, applied to the SR data
set. The results are shown for both the VTF estimates v̂1

and v̂2. The curves in Fig. 1a are parameterized by the
number of electrodes used in the algorithm, which means
that along the curve the number of electrodes increases
from 2 to 25. For both the EBE and MVDR approach it
follows that increasing the number of electrodes generally
improves both the estimation of the AA and the cancella-
tion of the VA. The MVDR in combination with the VTF
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Figure 1: Comparison in terms of ARMSE versus VRE for all four data sets. The number of electrodes increases along
the curve from M = 2 to M = 25 electrodes, where M = 25 is indicated with a black dot. The energy of the unfiltered
ventricular signal is indicated with a dotted line.

estimate v̂2 clearly outperforms the BE and EBE approach.
Further we see that for SR, using the v̂2 estimate over v̂1

leads to significantly better results.

5.4. Atrial fibrillation

Figs. 1b-1d show the performance in a similar way as in
Fig. 1a, but now for the AF data sets. The results for the
simplest AF data set AF1 are in line with the SR data set
in Fig. 1a: The proposed MVDR-based estimator clearly
improves over the BE and EBE approach. However, we
also see that the large improvements of the VTF estimate
v̂2 over using the simpler v̂1 as shown in Fig. 1a for SR
seem to vanish. For the data sets AF2 and AF3, shown in
Figs. 1c-1d, however, we see that the proposed EBE has
the better performance over the BE and the MVDR-based
approach. The reduced performance of the MVDR com-
pared to the EBE approach is most likely due to the as-
sumptions that are used when deriving the MVDR-based
approach: assuming that RA has rank-1. Most likely, dur-
ing higher degrees of AF this assumption becomes less
valid. The results do however show that extending the BE
using more electrodes and using the v̂2 estimate gives sig-
nificantly better results than the BE.

6. Discussion and conclusion

In this paper, we formulated the problem of atrial ac-
tivity estimation as a beamforming problem and proposed
two different beamformers for AA estimation. Simulations
are done with synthetically generated EGMs containing
both VA and various degrees of AF.

The simulations show that for an increasing number of
electrodes, the performance of the two proposed beam-
formers increases. For data sets with a low degree of AF,
the MVDR performs better than the EBE. The EBE, how-
ever, outperforms the MVDR in the two scenarios with

higher degrees of AF. This is probably due to the rank-1
assumption for the RA matrix, which is harder to satisfy
for higher degrees of AF. The proposed EBE always im-
proves over the well known BE configuration.

Matlab Implementations can be downloaded from
https://cas.tudelft.nl/Repository/.
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Effect of bipolar electrode orientation on local electrogram
properties. Heart Rhythm 2018;15(12):1853–1861.

[4] Benesty J, Chen J, Pan C, et al. Fundamentals of differential
beamforming. Springer, 2016.

[5] Markovich-Golan S, Gannot S. Performance analysis of
the covariance subtraction method for relative transfer func-
tion estimation and comparison to the covariance whiten-
ing method. In IEEE Int. Conf. Acoust., Speech and Signal
Proc.2̇015; 544–548.

[6] Habets EA, Benesty J, Gannot S, Cohen I. The mvdr beam-
former for speech enhancement. In Speech processing in
modern communication. Springer, 2010; 225–254.

[7] Sun M, de Groot NM, Hendriks RC. Joint cardiac tissue con-
ductivity and activation time estimation using confirmatory
factor analysis. Computers in Biology and Medicine 2022;
144:105393.

Address for correspondence:

Dr. ir. Richard C. Hendriks
r.c.hendriks@tudelft.nl
Mekelweg 4, 2628 CD Delft, The Netherlands


	Introduction
	Signal model and problem formulation
	Transfer function estimation
	Ventricular transfer function
	Atrial transfer function

	Atrial signal estimation
	Extended bipolar electrode
	MVDR beamformer

	Simulation results
	Data set
	Error measure
	Sinus rhythm
	Atrial fibrillation

	Discussion and conclusion

