Determining the patient-specific conductivity of pelvic tumours for use in Hyperthermia Treatment Planning
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Introduction & Theory: In RF deep hyperthermia pelvic tumors (e.g. cervix or bladder) are heated by application of radiofrequency fields in the 70
to 150 MHz frequency range. To obtain a focussed heating and determine the tumor’s SAR absorption, EM modelling is employed which is known as
Hyperthermia Treatment Planning (HTP)[1]. An essential step in HTP is the assignment of tumor electrical conductivity as this is the main
determining factor in the RF energy absorption of the tumor. Currently, a fixed tumor conductivity is assumed for all patients and tumor sites,
however, most tumors have elevated conductivities varying significantly among patients [2,3]. In this study we investigate the feasibility of using
Electric Properties Tomography (EPT)[4] to perform assessment of the electrical conductivity of pelvic tumors to improve SAR dosimetry. In a
previous study we showed the validity of the crucial B," phase (¢") assumption, i.e. 2¢"= ¢y, (¢;n: measurable transceive phase), in a large central
region in the human pelvis at 3T [3,5]. Here, we present EPT based conductivity measurements for a pelvic tumor model over a
wide range of tumor conductivity and tumor locations. Furthermore, we present in vivo conductivity measurements of the human
pelvis for a female volunteer.

Materials & Methods: For all measurements a pelvic-sized phantom was used, consisting of an elliptical cylinder (dpajo=34
cm, dpino=25 cm, length=40 cm), with a spherical (d=10 cm) compartment mimicking a cervical tumor (Fig. 1). The spherical
compartment can be positioned on- or off-axis. The elliptical cylinder contained ethylene glycol (64g/L NaCl) with dielectric
properties that matched the volumetric average of the pelvis at 128 MHz (6=0.44 S/m and &,=30, [7]). To cover the whole range
of possible o—values occurring in biological tissue the conductivity of the spherical compartment was varied from ¢ = 0.04 S/m
to 6 = 2,00 S/m in 10 steps by adding NaCl. To test the applicability of the phase assumption for an asymmetric position of the
sphere geometry, the spherical compartment was positioned off-center. The dielectric properties were independently verified

with an impedance probe (85070E, Agilent Technologies). Furthermore, simulations of the human
pelvis (Ella, IT'[S Foundation) and MRI-measurements of the female human pelvis were performed. _ @
All experiments were conducted on a 3.0T scanner (Philips Healthcare, Best, The Netherlands) using a

16 channel receive coil. The B, amplitude map was acquired using the AFI method [8] (3D, nom. flip
angle = 65° TR1 = 50 ms, TR2 = 290 ms, 2.5x2.5x5mm’, 12 slices). The transceive phase was Figure 2. Phantom results, 5= 0.01, 1.18,
acquired by a SE experiment (2.5x2.5x5mm, CLEAR, TR = 1200 ms) [9,10] using an uniformity ~ 1.74 (probe measurements), respectively.
correction method [CLEAR] to compensate for the complex receive sensitivity pattern (s/m]
of the receive coil. Conductivity values were reconstructed using a Helmholtz based

Figure 1. Pelvic-
sized phantom.

reconstruction [3]. 1,8 i- Probe measurement '_‘_
Results & Discussion: In Fig. 2 we present the reconstructed o-maps of only 3 1,6 | 8

phantom measurements with increasing o-value in the spherical compartment. The 14 [#-Avaragereconstructed g |

reconstructed average o-values of the spherical compartment are in very good L2 [—conductivityvatue- b

quantitative agreement with the probe measurements, as is illustrated in figure 3. Figure 0 515 i

4 shows the reconstructed c-map with the spherical compartment (6=0.64 S/m, probe 0:6 i @

measurement) positioned on-axis (Fig. 4a) and off-axis (Fig. 4b). The histograms 0,4 ' P v

(Fig.4c,d) illustrate the capability of EPT to reconstruct c-maps of tumors located off- 0,2 —= :
axis. We note that the c-values of the off-axis located compartment have a skewed 0 i ’ ' ’ ’ ’ ’
normal distribution (Figdd) while the data of the on-axis location are normally 0 2 = 6 8 10 12 14

distributed (Fig.4c). This effect arises from the impact of the asymmetry on the B;" NaCL Concentration (gram per Liter H20)

phase approximation. However, the effect is marginal and will not corrupt tumor  Figure 3. Conductivity based on probe measurements and
conductivity measurement significantly. Using in vivo measurements of the ¢,, (Fig.5¢)  EPT in spherical compartment.

and |B,"| (fig.5f) we are able to reconstruct a c-map (Fig.5c) which correlates with

water/fat contrast of a Dixon scan (Fig.5d). Water like tissue are assigned higher conductivity than fat tissue. Due
to the large heterogeneity of the pelvis anatomy and the assumption of piecewise continuous dielectric properties
in the reconstruction, the quality of reconstructed o-maps are corrupted at abrupt tissue boundaries. This effect is ' . b
also confirmed by the EPT reconstruction based on the simulations (Fig. 5b). This effect will need to be addressed
before EPT can be used to reconstruct complete dielectric model of the whole pelvic region.

Conclusions: The phantom measurements demonstrated the ability of EPT to measure quantitatively the c-value c CI

of pelvic tumours. We have shown a good correlation between the reconstructed o-values and probe measurements i L

for a wide range of o-values and for off-axis located spherical compartment. As most pelvic tumours are located in 0 05 1 0 05 1[s5/m]
the central region of the pelvis these results are promising for HTP. In vivo measurement illustrated the Figure 4. On-axis and off-axis
applicability of EPT in pelvic region, however, the reconstruction of o-map of the whole pelvic region requires located inner compartment.
further investigation.
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Figure 5. Actual 6-map (a) and
reconstructed (b) based on simulations,
reconstructed c-map based on in vivo
measurement (c). Dixon scan(d).
measured ¢y, (€) and [B;7(f).
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