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Abstract 

In submicron CMOS technology, due to the nonlinearity of 
the mapping from variation sources to the gate/wire delay, the 
distribution of the delay is no longer Gaussian. As the widening 
of process variability calls for accurate non-Gaussian timing 
models, their deployment requires well-controlled 
characterization techniques to cope with the complexity and 
scalability. In this paper, we present a corresponding analysis 
for the underlying interconnect timing model characterization 
infrastructure of statistical timing analysis. As the experimental 
results indicate, the non-Gaussian quadratic interconnect 
timing model is accurate within 1% error of the corresponding 
Monte Carlo simulation. 

Introduction 

Gate delay and power dissipation are critical issues in present 
day low power VLSI circuit design. As we are moving towards 
nanometer technology, variations in process, voltage, and 
temperature are increasing, causing significant uncertainty in 
the delay estimation [1] and greatly impacting the yield [2]. As 
a consequence, various statistical static timing analysis (SSTA) 
algorithms [3-5] have been proposed to compute the statistical 
variations of timing performance due to the underlying process 
parameters. Deriving an efficient characterization 
methodology [6] and model order reduction techniques that can 
provide parameterized interconnects and facilitate efficient 
logic stage delay calculation is one of the critical tasks. Hence, 
in this paper§, we propose a methodology for characterization 
of the quadratic timing model [3] that can capture large range 
non-Gaussian process variations, and based upon the adjusted 
parameter dimension reduction technique, we propose a timing 
accuracy verification flow for nonlinear logic gates and logic 
stage delays.  

Accuracy of Interconnect Delay Model 

The most efficient way of quadratic model characterization is 
to adopt suitable parameter dimension reduction techniques 
that provide smart guidance for data sampling. The several 
model reduction methods for large sparse problems are related 
to Padé approximations of the underlying transfer function, or 
(directly) based on Krylov subspace techniques. In this paper, 
we adjust the dominant subspaces projection model reduction 
(DSPMR) [7], which is a numerically advantageous version of 
the balanced truncation technique [8]. A quadratic timing delay 
χ in reduced parameter space is expressed as  
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where Z is the reduced parameter set, and β and H are first and 
second order parameter dependencies, respectively. The 
resulting model in the full parameter space is given by 
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where ∆χ is the resulting circuit delay variation with 
∆χ=χ(p)-χ0, and ∆p is the parameter variation. Unlike in [7], to 
reduce the numerical cost of obtaining the projection matrix B, 
we approximate (up to machine precision) low rank Cholesky 
factors C. The diagonal matrix containing the singular values of 
reduced order r has the same dimensions as the factored matrix 
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In contrast to linear interconnects, where transfer function 
moments can be computed efficiently, the characterization of a 
nonlinear logic stage is more complex. In this paper, we 
propose an accuracy verification flow based upon the adjusted 
least squares approximation method. Denoting 
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the estimated delay vector for the kth gate at the i th iteration can 
be found by finding the solution for the transformation 
χk
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is the ideal solution of the delay for the error ε. We select an 
error mapping Fi in the form of  
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where di is called error function and needs to be constructed. A 
quadratic function is selected in this paper to approximate the 
error function 
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where d=[d1,d2,…,dn]
T, ∆p=[ ∆p1, ∆p2,…, ∆pn]

T, γj and γjl  are 
the coefficients of the error function at the i th iteration. The 
coefficients are determined by fitting the equation to the data 
set under the least square criterion. Once the error function is 
established, the performance function is executed as 
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Experimental Results 

The proposed method and all sparse techniques have been 
implemented in Matlab. All the experimental results are carried 
out on a PC with an Intel Core 2 Duo CPUs running at 2.66 
GHz and with 3 GB of memory. To characterize the timing 
behavior, a lookup table-based library is employed which 
represents the gate delay and output transition time as a 
function of input arrival time, output capacitive load, and 
several independent random source of variation for each 
electrical parameter (i.e., R and C). In each case, both driver 
and interconnect are included for the stage delay 
characterizations. The analytical delay distribution obtained 
using the quadratic interconnect model in a 45 nm CMOS 
technology is illustrated in Figure 1. The nominal value of the 
total resistance of the load and the total capacitance is chosen 
from the set 0.15kΩ-1kΩ and 0.4pF-1.4pF, respectively. The 
sensitivity of each given data point to the sources of variation is 
chosen randomly, while the total σ variation for each data point 
is chosen in the range of 10% to 30% of their nominal value. 
The scaled distribution of the sources of variation is considered 
to have a skewness of 0.5, 0.75, and 1. When very accurate 
Gramians (e.g. low rank approximations to the solutions) are 
selected, the approximation error of the reduced system as 
illustrated in Figure 2 is very small compared to the Bode 
magnitude function of the original system. The lower two 
curves correspond to the highly accurate reduced system; the 
proposed model order reduction technique delivers a system of 
lower order, and the upper two denote fixed reduced orders. 
The transfer function of the system is denoted as G. The 
reduced order is chosen in dependence of the descending 
ordered singular values σ1,σ2,… σl, where l is the rank of factors, 
which approximate the system Gramians. For n variation 
sources and r reduced parameter sets, the full parameter model 
requires O(n2) simulation samples and thus has a O(n6) fitting 
cost. On the other hand, the proposed accuracy validation 
algorithm has a main computational cost attributable to the 
O(n+r2) simulations for sample data collection and O(r6) fitting 
cost for the quadratic model significantly reducing the required 
sample size and the fitting cost. Using 7000 Monte Carlo 
iterations (to guarantee a 99% confidence level with 0.5% 
accuracy) as a reference, the proposed algorithm evaluates the 
parameterized quadratic wire delay model with an accuracy 
within 1%, at the cost of at most 50 iterations (Figure 3), while 
achieving at least 16-fold cpu-time reduction. For each Monte 
Carlo sample over ε’s, the relative error is calculated as the 
difference between the delay result of the proposed approach 
and that of straightforward Monte Carlo simulation. 

Conclusion 

This paper presents a highly efficient methodology for 
quadratic timing model timing accuracy verification flow of 
nonlinear logic gates and logic stage delays. By adopting 
parameter dimension reduction techniques and an accurate 
model verification flow, timing model extraction can be 
performed in a reduced parameter space, thus providing a 
significant reduction on the required number of simulation 
samples to construct accurate quadratic timing models. 
Extensive experiments are conducted on a large set of random 
test cases, showing very accurate results. 
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Figure 1: Analytical delay distribution in 45 nm CMOS technology. 
Solid line illustrates non-Gaussian distribution of the delay. 
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Figure 2: The Bode magnitude plot of the approximation errors.  
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Figure 3: The least squares error for a 300 iterations. 


