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Abstract

In submicron CMOS technology, due to the nonlirngaof
the mapping from variation sources to the gate/déeky, the
distribution of the delay is no longer Gaussiantheswidening
of process variability calls for accurate non-Garssiming
models, their deployment requires
characterization techniques to cope with the coriyleand
scalability. In this paper, we present a correspandnalysis
for the underlying interconnect timing model chaeaization
infrastructure of statistical timing analysis. Agtexperimental
results indicate, the non-Gaussian quadratic ioterect
timing model is accurate within 1% error of theresponding
Monte Carlo simulation.

Introduction

Gate delay and power dissipation are critical issn@resent
day low power VLSI circuit design. As we are moviogvards
nanometer technology, variations in process, veltaand
temperature are increasing, causing significanedaimty in
the delay estimation [1] and greatly impactingytedd [2]. As
a consequence, various statistical static timiradyeis (SSTA)
algorithms [3-5] have been proposed to computesthtistical
variations of timing performance due to the undadyprocess
parameters. Deriving an efficient
methodology [6] and model order reduction technégghat can
provide parameterized interconnects and faciliteffécient
logic stage delay calculation is one of the crltteaks. Hence,
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whereZ is the reduced parameter set, grahdH are first and
second order parameter dependencies, respectivdig.
resulting model in the full parameter space is wgikg
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where 4y is the resulting circuit delay variation with
Ax=x(p)-Xo. and4p is the parameter variation. Unlike in [7], to
reduce the numerical cost of obtaining the propecthatrixB,
we approximate (up to machine precision) low ramol€sky
factorsC. The diagonal matrix containing the singular valoé

reduced order has the same dimensions as the factored matrix

UsvV' =C S= cu™? 3)

In contrast to linear interconnects, where trandtaiction
moments can be computed efficiently, the charazd#dn of a
nonlinear logic stage is more complex. In this papee
propose an accuracy verification flow based upenaijusted
least squares approximation method. Denoting

X6 (P) = Xo + DX, 3)

the estimated delay vector for tegate at thé" iteration can
be found by finding the solution for the transforroati
=Fi(Xs) subject to

e = x5 <ty - x|

B=U,,

(4)

here

in this papet, we propose a methodology for characterization

of the quadratic timing model [3] that can captiarge range
non-Gaussian process variations, and based upadjbsted
parameter dimension reduction technique, we propdseing
accuracy verification flow for nonlinear logic gatand logic
stage delays.

Accuracy of Interconnect Delay M odel

The most efficient way of quadratic model charaztdion is
to adopt suitable parameter dimension reductiohniecies
that provide smart guidance for data sampling. $éeeral
model reduction methods for large sparse problemsedated
to Padé approximations of the underlying trangfiecfion, or
(directly) based on Krylov subspace techniqueshis paper,
we adjust the dominant subspaces projection madklation
(DSPMR) [7], which is a numerically advantageoussian of
the balanced truncation technique [8]. A quadiating delay
xin reduced parameter space is expressed as
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is the ideal solution of the delay for the ereoWe select an
error mapping; in the form of

X (P) = X5, (P) + diAX, 6)

whered, is called error function and needs to be construéted.
guadratic function is selected in this paper to apiprate the
error function

d = ZyApﬁZZy,,AgAp t=1,2,...,n @)
j=11=1
whered=[d,0,,...,d] ", 4p=[4p1, Ap...., Api] ", yandy; are

the coefficients of the error function at tH%neratlon The
coefficients are determined by fitting the equatiorthe data
set under the least square criterion. Once the enrmtibn is
established, the performance function is executed as

Xion(P) = X6 (D) + DX
DXy = X0 (P) + dAX
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