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Abstract—This paper reports a new step-size control stratggfor  differential equations (SDE) as a convenient way to represent
adaptive numerical integration in time-domain noiseanalysis of  such a process. We adapt model description as defined, in [4
non-linear dynamic integrated circuits with arbitra ry eXCitatiOn?. Where therma' and Shot n0|se are expressed as de'ta_t&dre'a
A non-stationary stochastic noise process is desoeid as anltd  pjse processes having independent values at every time point,
system of stochastic differential equations and aumerical  o4ejed as modulated white noise processes. These noise
solution for such a set of equations is found. Statical simulation rocesses correspond to current noise sources which are
of dynamic circuits fabricated in 45 nm CMOS proces shows p - P . L .
that the proposed numerical methods offer an accute and mcludgd in the 'models of the integrated-circuit devioks.
efficient solution. numerical experiments suggest that both the convergence and
stability analyses of adaptive schemes for SDEs exteral t
Keywor ds-integration methods, noise analysis, computed aided number of sophisticated methods which control different error
design, sotchagtic differential equations, dynamic integrated measures, we follow the adaptation strategy, which can be
circuits viewed heuristically as a fixed time-step algorithm appiced
time re-scaled differential equation. Additionally, adaptati
also confers stability on algorithms constructed frogplieit
Noise limitations are a fundamental issue for robusuitirc time_integratorS, resumng in better qua"tative behavian
design and its evaluation has been subject of numerous studigs fixed time-step counter-parts [5]. Similarly, recognigin
[1]. Correspondingly, a number of CAD tools have beennhat the variance-covariance matrix when backward Euler is
suggested [2]-[3]. The most important types of electmcase  applied to such a matrix can be written in the continuous-time
sources (thermal, shot, and flicker noise) in passive@Ms | yapunov matrix form, we then provide a numerical solution
and integrated circuit devices have been investigate such a set of linear time_varying equa’[ions_
extensively, and appropriate models have been derived [1] as
stationary and in [4] as non-stationary noise sources. Tise no I
performance of a circuit can be analyzed in terms of small '
signal equivalent circuits by considering each of the ) ) ) i
uncorrelated noise sources in turn and separately computing N general, for time-domain analysis, modified nodal
their contribution at the output. Unfortunately, thisthea is ~ 2nalysis (MNA) leads to a nonlinear ordinary differential
only applicable to circuits with fixed operating points aad equation (ODE) or differential algebraic equation (DAE)

not appropriate for noise simulation of circuits with rohiag 2{5;%?;%"2;2*;& rr[;?/stmc:asre]z:, (')Sf tliﬁngrorr;njlctisltrgg ?nrtiﬂaiti
bias conditions. A widespread approach for noise simulation iMethods [617] and, at each integration step, a Newitan-|

the time domain is Monte Carlo analysis. However, accyratel

. . ; ethod is used to solve this nonlinear algebraic system
determining the noise content requires a large number Gherefore, from a numerical point of view, the equations
simulations, so consequently, the Monte Carlo metho

; AN ! odeling a dynamic circuit are transformed to equivdleatr
becomes vergputime consuming if the chip becomes large. gquations at each iteration of the Newton method anddcit e
As a result, several methods, such as variance reductitime instant of the time-domain analysis. Thus, we crihest
techniques including importance sampling, stratified sampl the time-domain analysis of a nonlinear dynamic circuit
correlated sampling, and regression sampling are reported ¢ansists of the successive solutions of many lineauitirc
improve the precision of the statistical estimate wittmaller  approximating the original (nonlinear and dynamic) circtit a
set of random simulations. Similarly, statistical resggion  specific operating points.
techniques such as response surface modeling have bee . o . .
applied to further reduce the number of random simulations, Tonsider MNA and cireuits embedding, besides voltage-
. . . . controlled elements, independent voltage sources, the
Nevertheless, the computational cost still remains high for - -
large-scale circuits. remaining types of controlled sources gnd noise sources.
Combining Kirchhoff's Current law with the element
In this paper, we treat the noise as a non-stationargharacteristics and using the charge-oriented formulation
stochastic process, and introduce an It6 system ohastic yields a stochastic differential equation of the form
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to)/N = h, n = 1,...N, whereh is the integration stepsize, we
have the following (independent) random increméts\Wi.

A%d(x(t))ﬁb()vﬂ (X3, 3¢(3=0 @

whereA is a constant singular incidence matrix determioed
the topology of the dynamic circuit parts, the weatl(x)
consists of the charges of capacitances and thesflof

1~N(0,h) of the Wiener procesa.

Moreover, the sampling of normal variates to appnate
the Wiener process in the SDE is achieved by coemput

inductances, andis the vector of unknowns consisting of the generation of pseudo-random numbers. However, sheofia

nodal potentials and the branch currents throughage-

pseudo-random number generator needs to be ewdlirate

defining elements. The terefx,) describes the impact of the terms of statistical reliability. Nevertheless, mosmmonly
static elementst(x,t) denotes the vector of noise intensities,sed pseudo-random number generators have beeth timdih
and ¢(t) is a vector of independent Gaussian white noisgheir supposed distribution reasonably well, bet generated

sources. The partial derivatives, f,, d,, d, dy andd, are

assumed to exist and to be continuous. At a filmbiag, the
charge oriented system (1) seems to be disadvaniagénce
its dimension is significantly larger than the dime®n of the

classical MNA system [6]. However as numerical rodth
applied to such system require the differentiatbthe charge
and flux functions, solving the resulting systemnahlinear

equations requires the second derivatives of tfigsetions,

i.e., more smoothness. This plays a significang rfor the

numerical solution since models are usually notcéwi
differentiable. Additionally, it is computationallymore

expensive. Furthermore, charge and flux consemstiare

only fulfilled approximately.

Equation (1) represents a system of nonlinear agiith
differential equations, which formulate a systenstfchastic
algebraic and differential equations that descifilgedynamics
of the nonlinear circuit that lead to the MNA edqaas when

numbers often seem not to be independent as they ar
supposed to be: this is not surprising since, fangcuent
generators at least, each number is determinedlgxtacits
predecessor [8].

I1l.  ADAPTIVE NUMERICAL METHODS

A. Deterministic Euler-Maruyama Scheme

The adaptive methods control the time-step of avdod
Euler deterministic step so that it deviates otiyhdly from a
backward Euler step. This not only controls annesti of the
contribution to the time-stepping error from thdedministic
step, but also allows the analysis of stabilityrgéa time)
properties for implicit backward Euler methods te b
employed in the explicit adaptive methods. Most udation
schemes for SDE'’s are derived using an It6- Taykpaasion
truncated after a finite number of terms, with theler of

the random source$ are set to zero. Solving (1) means toconvergence depending on the number of terms carsidn

determine the probability density functidh of the random
vector x at each time instartt However, generally it is not
possible to handle this distribution directly. Hené& may be
convenient to look for an approximation that canfbend
after partitioning the space of the stochastic s®wariableg’

in a given number of subdomains, and then solving t
equation in each subdomain by means of a piecdimisar
truncated Taylor approximation. Since the magnitofiehe
noise content in a signal is much smaller in cornsparto the
magnitude of the signal itself in any functionalcait, a
system of nonlinear stochastic differential equatidescribed
in (1) can be piecewise-linearized; it is then paesto
combine the partial results and obtain
approximated solution to the original problem.

We will interpret (1) as an It6 system of stochasti
differential equations

AdCX(Q), +[ € X 5 Bds[ ( K)s)tdwso (2

where the second integral is an It6-integral, Whdenotes an
m-dimensional Wiener process. When considering aemizal
solution of a differential equation, we must redtriour
attention to a finite subintervatyff] of the time-interval t,«]
and, in addition, it is necessary to choose an qgpjate
discretizationty<t; <...<t,<...<ty =t of [ty, t], due to computer
limitations. The other problem is simulating a séampath
from the Wiener process over the discretizatior{tgf]: so
considering an equally-spaced discretization, tj#,, = (t-

the desire

the truncation. Keeping only the first term on tlegerministic
grid O=y<t;<...<ty=t end, yields the deterministic-implicit
Euler-Maruyama scheme, which applied to (2) reads

AA(X)-d(X. )+ hé X 9+ K Xi, 1)A W=0(3)

where h=t-t.;, AW=W()-W(t.1), and X denotes the
approximation toX(t). Realizations oW are simulated as
~(0, h)-distributed random variables (the incremefit¥ are

generated as suggested in Section 1l). The erros a
dominated by the deterministic terms as long asstbp-size
is large enough. In more detail, the error of theig methods
pehaves likeO(h? + ch + £*h'), whenz is used to measure the
smallness of the nois&(k, ) =¢;f,(x, ), r=1,..., me«l). The
smallness of the noise also allows special estsnafethe
local error terms, which can be used to controktieg-size. In
[9] a stepsize control is given for the determinidEuler
scheme in the case of small noise that leads tptidastep-
size sequences that are uniform for all paths. edtienates of
the dominating local error term are based on vahfethe
deterministic term and do not cost additional eatitins of
the coefficients of the SDE or their derivativeshotligh
having the lowest order of convergence, the EulartMama
scheme completely avoids forming multiple stoclasti
integrals, noticeably improving the simulation gpee
especially considering the large number of simatetineeded
to approximate small probabilities. However, as théer of
the Euler-Maruyama method is low, the numericalltesare
inaccurate unless a small stepsize is used.



B. Deterministic Milstein Scheme

C. Noise Correlation Function

General stochastic Taylor schemes can be formulated If X; is a Gaussian stochastic process, then it is cgipl

compactly using hierarchical sets of multiply irelicwith
iterated multiply stochastic integrals and iterasgaplication
of the differential operators to the coefficienndtion. The
multiple stochastic integrals which they contaioyide more
information about the noise processes within diszaton
subintervals and this allows an approximation ghbi order
to be obtained. The Milstein scheme differs from tuler
scheme by an additional correction term for thelsstic part,
which includes double stochastic integrals. The vabo
procedure indicates the general pattern: the higireler
schemes achieve their higher order through theusimmh of
multiple stochastic integral terms; the coefficenf the
scheme involve partial derivatives of the SDE dogdht
functions; a scheme may have different strong armdkw
orders of convergence; and, the possible ordersstimng
schemes increase by a fraction %2, whereas possithées for
weak schemes are whole numbers. The higher ortenss

require adequate smoothness of the deterministid an PK(t)+K(t)P'+Q =0

stochastic coefficients and sufficient informatiabout the
driving Wiener processes, which is contained in rindtiple
stochastic integrals. Additionally, in higher ordstrong
Taylor approximations derivatives of the determinisand
stochastic coefficients have to be calculated e step.

In this paper, to adapt the Milstein scheme toSBE (2),
we apply this method in such a way that it impljciealizes a
Milstein scheme for the inherent SDE. Except fahleir order
terms this is realized by

AA(X)—diX )+ hée N+ KL, X)A W

K 4)
-2 & )Ad+he JF & 1)) =
=1

where
S

=0 1= [ [aw @aw (9
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(6)

In the last term the Jacobidwl+he, of the previous iterate
can be reused. An upper bound for the pathwise efrthe
Milstein method is determined using the Doss-Sussma
approach to transform the stochastic differentiplation and
the Milstein scheme to a random ordinary diffel@riguation
and a corresponding approximation scheme, respéctiVhe
pathwise approximation of random ordinary diffeignt
equations is considered in [10], where the Euled &eun
methods are analyzed. Moreover, it is shown thatcthssical
convergence rates of these schemes can be retaiped
averaging the noise over the discretization suhiate. In [11]
it is shown that the explicit Euler-Maruyama schemi¢h
equidistant step sizelltonverges pathwise with orderd/fer

characterized by its mean and correlation functiaom It6’s
theorem on stochastic differentials, noting tXaand dw are
uncorrelated, variance-covariance matix) of X(t) with the
initial value K(0)=E[x x'] can be expressed in differential
Lyapunov matrix equation form as [12]

dK(t)/dt= E() K()+ K()E (§+ RH F (9 (6)

Note that the mean of the noise variables is alveays for
most integrated circuits. In view of the symmetfyKgt), (6)
represents a system of linear ordinary differentigliations
with time-varying coefficients. To obtain a numatisolution,
(6) has to be discretized in time using an Eulertjama or
Milstein method. If backward Euler is applied to),(6he
differential Lyapunov matrix equation can be written a
special form referred to as the continuous-timeelalgic
Lyapunov matrix equation

@)

K(t) at time pointt, is calculated by solving the system of
linear equations in (7). Such continuous time Lyapu
equations have a unique solutig(t), which is symmetric and
positive semidefinite. Several iterative techniqlase been
proposed for the solution of the algebraic Lyapumoatrix
equation (7) arising in some specific problems whéne
matrix P, is large and sparse [13]-[14], such as the Bartels
Stewart method [15], and Hammarling’s method [7hick
remains the one and only reference for directly potimg the
Cholesky factor of the solutioiK(t) of (7). Large dense
Lyapunov equations can be solved by sign functiased
techniques [16] or by iterative approaches [17].yld¥
subspace methods, which are related to matrix pohyals
have been proposed [18] as well.

In this paper, we apply a low rank version of ttexdtive
method, which is related to rational matrix funoso The
postulated iteration for the Lyapunov equationi§7gjiven by
K(0)=0and

(Pr +yi|n)Ki—1/2 =Q - K—]_(ET -y L)
(R+R1)K =-Q =KL (P"-¥})

fori=1,2,... This method generates a sequence of matikces
which often converges very fast towards the sahytpyovided
that the iteration shift parametetsare chosen (sub)optimally.
For a more efficient implementation of the methad,replace
iterates by their Chlesky factors, i.&=L;L;" and reformulate
in terms of the factork;. The low rank Cholesky factots are
not uniquely determined. Different ways to genertiiem
exist [19]. Note that the number of iteration stéps needs

®)

arbitrarys>0. Hence, the pathwise and the mean-square rate Bpt Pe fixed a priori. However, if the Lyapunov agon

convergence of the Euler method almost coincide.

should be solved as accurate as possible, coresotts are
usually achieved for low values of stopping craemvhich are
slightly larger than the machine precision.



V.

The proposed method and both adaptive numericdiodst
have been implemented in Matlab. All the experirabrgsults
are carried out on a single processor Linux sysigti Intel
Core 2 Duo CPUs with 2.66 GHz and 3 GB of memohe T
proposed method solves the set of linear time-uaryi
equations (6) including the noise content desaniptio find
the steady state value of the time-varying covagamatrix.
This gives the variance at the output node andciitss-
correlation with other nodes in the circuit, whiatekes it
possible to evaluate the devices that most affegaréicular
performance, so that design efforts can be addiessdhe
most critical section of the circuit. The covarianmatrix is
periodic with the same period as either the inpgna (e.g.,
translinear circuits) or the clock (in circuits Buas dynamic
logic).

EXPERIMENTAL RESULTS

The effectiveness of the proposed approaches vedsated
on several dynamic circuits exhibiting differentstitictive
features in a variety of applications. As a repnésiive
example of the results that can be obtained, wewsao
application of noise analysis to the characteriratiof
dynamic logic gates and dynamic latch comparatasidated
in standard 45 nm CMOS technology (Figure 1 andiféi@).

translate to adc noise at the input of the receiver. Noise

presented at the inputs of a logic gate is primardused by
the coupling effect among adjacent signal wiresnil&rly,

charge sharing reduces the voltage level at thamiginode
causing potential false switching of a dynamic ¢ogjate.
Without the feedback keeper in these circuits,gaes would

have zero noise rejection and the dynamic nodes wil

discharge completely given enough time. The feekikaeper
placed on the dynamic node maintains the charghaimode,
giving the gate some degree of noise-rejection. Mhise
rejection capability of the circuit depends on thkative sizes
of the transistors in the dynamic gate and theldaeki keeper.
However, note that if the dynamic node incorredilscharges
past a certain point, the result is irreversiblel amcorrect
computation will result.

The concept of a dynamic comparator exhibits pakfdr
low power and small area implementation and, ia tuntext,
is restricted to single-stage topologies withoutist power
dissipation. A widely used dynamic comparator isduhon a
differential sensing amplifier [20] is shown in Eig 2a). In
addition to the mismatch sensitivity, the latchailso very
sensitive to an asymmetry in the load capacitahbis can be
avoided by adding an extra latch or inverters dsutfiering
stage after the comparator core outputs. A fullffedéntial

Circuits designed using dynamic logic styles can bejynamic comparator based on two cross-coupledrelitel

considerably faster and more compact than thelicsEMOS
counterparts. Nevertheless, the absence of a gatieup
chain makes these dynamic circuits susceptiblegatinoise,
power and ground bounce, leakage, and charge-ghdwiting
the evaluate phase if the outputs are not beingudown
(Figure 1). Besides reducing gate noise margintdymssibly

pairs with switched current sources loaded withMOS latch
is shown in Figure 2b) [21]. Because of the dynamicrent
sources together with the latch, connected dirdttyveen the
differential pairs and the supply voltage, the camapor does
not dissipatedc-power. Figure 2c) illustrates the schematic
the dynamic latch given in [22], where the dynartatch

lowered supply voltage, the power and ground veltagconsists of pre-charge transistors, a cross-couipleerter, a
mismatch between a driver gate and a receiver gate differential pair and a switch.
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[

T
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Figure 1: Dynamic logic gate, &pkage currents, b) Supply noise,
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Figure 2: Dynamic latch comparsi@)[20], b)[21], ¢)[22]
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In the simulation we assumed that the time sexieme
composed of a smoothly varying function, plus &ddit
Gaussian white nois€, and that at any poink can be
represented by a low order polynomial (a truncaiechl
Taylor series approximation). The amount of noigeoduced
for any electrical device in the circuit correspsnob the
current noise sources, which are included in theefsoof the
integrated-circuit devices

Iy =VKT/RED) o=/ Al £(D ©)

whereT is the temperaturd,is Boltzmann’s constanty is the
elementary charge, anlg is the current through junction.
Figure 3 reports the point-by-point sample meathefEuler-
Maruyama solutions of the I[t6 SDE (2) and their eoal
95% confidence bands (from the 2.5th to the 97p8ticentile;
outer bands, dashed lines). Figure 4 is similaFigare 3 but
refers to the Milstein solution of the 1t6 SDE (2yhen the
analytic solution of the SDE is known, the (averagsolute)

1500 Monte Carlo iterations, the difference for alyric logic
gate is less then 0.2% and 0.8% for mean and \a@jan
respectively, with 14 timesputime reduction. Similarly, the
achieved speed gains for dynamic latch compar§26is[22]

are 12, 14 and 13 times, while the precision ifhwit0.3%,
0.2% and 0.3% for mean, and 0.7%, 0.9% and 0.8% for
variance. Consequently, the adapted Milstein metieadizes
three times speed increase in comparison with ickss
Milstein method.

For the recursive algorithm presented here it iseoked
that a faster lowest level kernel solver (with shié block
size) leads to an efficient solver of triangulartrixaequations.
For models with large dimension usually the maRixhas a
banded or a sparse structure and applying the IB&8tewart
type algorithm becomes impractical due to the Schur
decompositions (or Hessenberg-Schur), which cosemrsive
O(N’) flops. In comparison with the standard Matlab fiorc
lyap.m the cputime shows that computing the Cholesky

error at time T, depending on the desired number offactor directly is faster by approximate¥yflops.

simulationsR, can be computed as [8]

szl/zi\X(t,r)—y(t,rj (10)

were X(t,r) andy(t,r) denote the value of the analytic solution
at timet in ther-th trajectory and the value of the numerical
solution for the chosen approximation scheme ag titn the
r-th trajectory, respectively. Figure 5 compare theler-
Maruyama solutions (dotted lines) of the It6 SDEJ&h the
corresponding adapted Milstein solutions (soligéénand the
analytic solutions (dashed lines): the adaptedt®itsand the
analytic solutions are so close that they appeactigally
undistinguishable. For the calculation of the ertioe analytic
solution and the numerical solution must be congute the
same Brownian path (i.e. using the same sequence
pseudorandom numbers). At tinfe=l the Euler-Maruyama
method for the 1td SDE (2) implies an average eequals to

1.048x10, while the adapted Milstein scheme for the 1td6 SDE !

implies an average error of 5.962%10These results show
that the Milstein method is more accurate, althotinghEuler-
Maruyama method is faster: 27% and 11% in compangith
classical Milstein method and proposed adapted t&ils
method, respectively. Descriptive statistics aneoreed with
respect to the simulated values at the enddoietg. for the

Euler-Maruyama approximation of the [t6 SDE we have,

E(X)=1.161 whereE(.) denotes expectatioMar(X;) ~0.367,

Median(X;)=1.029, etc. One example of the estimated noise

variance (obtained at the output node of the dyoalogic
gate) is illustrated in Figure 6. In comparisonhai500 Monte
Carlo iterations, at any of the circuit nodes, tliféerence is
less then 1.1% and 3.2% for mean and varianceecésply,
while achieving considerableputime reduction (32.4 sec
versus 2.1 sec). Similarly, for dynamic latch conapars [20]-
[22], the difference is less then 1.1%, 1.0% ardd4dlfor mean,
and 2.9%, 3.1% and 3.0% for variance,
Correspondingly, the achieved speed gain is 14anid 15
times. For the adapted Milstein method, in comparis/ith

respectively.
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Figure 3: 1td6 SDE: normalized mean and 95% confiden
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Similarly, when the original matrix equation is Ireasing
real arithmetic is faster than using complex arigtim Hence,
we resort to iterative projection methods when tinetrix is
large. The approximate solution of the Lyapunovatiqu is
given by the low rank Cholesky factbr for which LL"~K. L
has typically fewer columns than rows. In genetatan be a
complex matrix, but the produtti" is real. More precisely,
the complex low rank Cholesky factor delivered ke t
iteration is transformed into a real low rank Clslefactor of
the same size, such that both low rank Choleskyoifac
products are identical. However, doing this requmeditional
computation. The iteration is stopped after a praefined
iteration steps (Figure 7).

V. CONCLUSIONS

Statistical simulation is one of the foremost stépghe
evaluation of successful high-performance IC desidue to
circuit noise that strongly affect devices behaviortoday’'s
deep submicron technologies. As circuit noise islehed as
non-stationary process, It6 stochastic differeatiaare
introduced as a convenient way to represent suplpeess.
Two adaptive deterministic numerical integration timogls,
namely, the Euler-Maruyama and adapted Milsteiresws,
are proposed to find a numerical solution of Itéfedential
equations. Additionally, an effective numerical gmn for a
set of linear time-varying equations defining thariance-
covariance matrix is found. The effectiveness ef phoposed
approaches was evaluated on several dynamic &rahst the
results indicate, the suggested numerical methaViges
accurate and efficient solutions of stochasticedéhtials for
noise analysis.
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