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Abstract—This paper reports a new step-size control strategy for 
adaptive numerical integration in time-domain noise analysis of 
non-linear dynamic integrated circuits with arbitra ry excitations. 
A non-stationary stochastic noise process is described as an Itô  
system of stochastic differential equations and a numerical 
solution for such a set of equations is found. Statistical simulation 
of dynamic circuits fabricated in 45 nm CMOS process shows 
that the proposed numerical methods offer an accurate and 
efficient solution. 
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I.  INTRODUCTION 

Noise limitations are a fundamental issue for robust circuit 
design and its evaluation has been subject of numerous studies 
[1]. Correspondingly, a number of CAD tools have been 
suggested [2]-[3]. The most important types of electrical noise 
sources (thermal, shot, and flicker noise) in passive elements 
and integrated circuit devices have been investigated 
extensively, and appropriate models have been derived [1] as 
stationary and in [4] as non-stationary noise sources. The noise 
performance of a circuit can be analyzed in terms of small-
signal equivalent circuits by considering each of the 
uncorrelated noise sources in turn and separately computing 
their contribution at the output. Unfortunately, this method is 
only applicable to circuits with fixed operating points and is 
not appropriate for noise simulation of circuits with changing 
bias conditions. A widespread approach for noise simulation in 
the time domain is Monte Carlo analysis. However, accurately 
determining the noise content requires a large number of 
simulations, so consequently, the Monte Carlo method 
becomes very cpu-time consuming if the chip becomes large. 
As a result, several methods, such as variance reduction 
techniques including importance sampling, stratified sampling, 
correlated sampling, and regression sampling are reported to 
improve the precision of the statistical estimate with a smaller 
set of random simulations. Similarly, statistical regression 
techniques such as response surface modeling have been 
applied to further reduce the number of random simulations. 
Nevertheless, the computational cost still remains high for 
large-scale circuits. 

In this paper, we treat the noise as a non-stationary 
stochastic process, and introduce an Itô system of stochastic 

differential equations (SDE) as a convenient way to represent 
such a process. We adapt model description as defined in [4], 
where thermal and shot noise are expressed as delta-correlated 
noise processes having independent values at every time point, 
modeled as modulated white noise processes. These noise 
processes correspond to current noise sources which are 
included in the models of the integrated-circuit devices. As 
numerical experiments suggest that both the convergence and 
stability analyses of adaptive schemes for SDEs extend to a 
number of sophisticated methods which control different error 
measures, we follow the adaptation strategy, which can be 
viewed heuristically as a fixed time-step algorithm applied to a 
time re-scaled differential equation. Additionally, adaptation 
also confers stability on algorithms constructed from explicit 
time-integrators, resulting in better qualitative behavior than 
for fixed time-step counter-parts [5]. Similarly, recognizing 
that the variance-covariance matrix when backward Euler is 
applied to such a matrix can be written in the continuous-time 
Lyapunov matrix form, we then provide a numerical solution 
to such a set of linear time-varying equations. 

II.  STOCHASTIC MNA  FOR TIME-DOMAIN NOISE 

ANALYSIS 

In general, for time-domain analysis, modified nodal 
analysis (MNA) leads to a nonlinear ordinary differential 
equation (ODE) or differential algebraic equation (DAE) 
system which, in most cases, is transformed into a nonlinear 
algebraic system by means of linear multistep integration 
methods [6]-[7] and, at each integration step, a Newton-like 
method is used to solve this nonlinear algebraic system. 
Therefore, from a numerical point of view, the equations 
modeling a dynamic circuit are transformed to equivalent linear 
equations at each iteration of the Newton method and at each 
time instant of the time-domain analysis. Thus, we can say that 
the time-domain analysis of a nonlinear dynamic circuit 
consists of the successive solutions of many linear circuits 
approximating the original (nonlinear and dynamic) circuit at 
specific operating points.  

Consider MNA and circuits embedding, besides voltage-
controlled elements, independent voltage sources, the 
remaining types of controlled sources and noise sources. 
Combining Kirchhoff’s Current law with the element 
characteristics and using the charge-oriented formulation 
yields a stochastic differential equation of the form 
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where A is a constant singular incidence matrix determined by 
the topology of the dynamic circuit parts, the vector d(x) 
consists of the charges of capacitances and the fluxes of 
inductances, and x is the vector of unknowns consisting of the 
nodal potentials and the branch currents through voltage-
defining elements. The term e(x,t) describes the impact of the 
static elements, f(x,t) denotes the vector of noise intensities, 
and ξ(t) is a vector of independent Gaussian white noise 
sources. The partial derivatives ex, fx, dx, dt, dxt and dxx are 
assumed to exist and to be continuous. At a first glance, the 
charge oriented system (1) seems to be disadvantageous since 
its dimension is significantly larger than the dimension of the 
classical MNA system [6]. However as numerical methods 
applied to such system require the differentiation of the charge 
and flux functions, solving the resulting system of nonlinear 
equations requires the second derivatives of these functions, 
i.e., more smoothness. This plays a significant role for the 
numerical solution since models are usually not twice 
differentiable. Additionally, it is computationally more 
expensive. Furthermore, charge and flux conservations are 
only fulfilled approximately.  

Equation (1) represents a system of nonlinear stochastic 
differential equations, which formulate a system of stochastic 
algebraic and differential equations that describe the dynamics 
of the nonlinear circuit that lead to the MNA equations when 
the random sources ξ are set to zero. Solving (1) means to 
determine the probability density function P of the random 
vector x at each time instant t. However, generally it is not 
possible to handle this distribution directly. Hence, it may be 
convenient to look for an approximation that can be found 
after partitioning the space of the stochastic source variables ξ 
in a given number of subdomains, and then solving the 
equation in each subdomain by means of a piecewise-linear 
truncated Taylor approximation. Since the magnitude of the 
noise content in a signal is much smaller in comparison to the 
magnitude of the signal itself in any functional circuit, a 
system of nonlinear stochastic differential equations described 
in (1) can be piecewise-linearized; it is then possible to 
combine the partial results and obtain the desired 
approximated solution to the original problem.  

We will interpret (1) as an Itô system of stochastic 
differential equations  
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where the second integral is an Itô-integral, and W denotes an 
m-dimensional Wiener process. When considering a numerical 
solution of a differential equation, we must restrict our 
attention to a finite subinterval [t0,t] of the time-interval [t0,∞] 
and, in addition, it is necessary to choose an appropriate 
discretization t0<t1 <…<tn<…<tN = t of [t0, t], due to computer 
limitations. The other problem is simulating a sample path 
from the Wiener process over the discretization of [t0,t]: so 
considering an equally-spaced discretization, i.e. tn-tn-1 = (t-

t0)/N = h, n = 1,…,N, where h is the integration stepsize, we 
have the following (independent) random increments Wtn-Wt(n-

1) ~N(0,h) of the Wiener process Wt.  

Moreover, the sampling of normal variates to approximate 
the Wiener process in the SDE is achieved by computer 
generation of pseudo-random numbers. However, the use of a 
pseudo-random number generator needs to be evaluated in 
terms of statistical reliability. Nevertheless, most commonly 
used pseudo-random number generators have been found to fit 
their supposed distribution reasonably well, but the generated 
numbers often seem not to be independent as they are 
supposed to be: this is not surprising since, for congruent 
generators at least, each number is determined exactly by its 
predecessor [8]. 

III.  ADAPTIVE NUMERICAL METHODS 

A. Deterministic Euler-Maruyama Scheme 

The adaptive methods control the time-step of a forward 
Euler deterministic step so that it deviates only slightly from a 
backward Euler step. This not only controls an estimate of the 
contribution to the time-stepping error from the deterministic 
step, but also allows the analysis of stability (large time) 
properties for implicit backward Euler methods to be 
employed in the explicit adaptive methods. Most simulation 
schemes for SDE’s are derived using an Itô-Taylor expansion 
truncated after a finite number of terms, with the order of 
convergence depending on the number of terms considered in 
the truncation. Keeping only the first term on the deterministic 
grid 0=t0<t1<…<tN=t end, yields the deterministic-implicit 
Euler-Maruyama scheme, which applied to (2) reads  
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where hl=tl-tl-1, ∆Wl=W(tl)-W(tl-1), and Xl denotes the 
approximation to X(tl). Realizations of ∆W are simulated as 
N(0, hl)-distributed random variables (the increments ∆W are 
generated as suggested in Section II). The errors are 
dominated by the deterministic terms as long as the step-size 
is large enough. In more detail, the error of the given methods 
behaves like O(h2 + εh + ε2h1/2), when ε is used to measure the 
smallness of the noise (fr(x, t) = ε;fr(x, t), r = 1,…, m, ε«1). The 
smallness of the noise also allows special estimates of the 
local error terms, which can be used to control the step-size. In 
[9] a stepsize control is given for the deterministic Euler 
scheme in the case of small noise that leads to adaptive step-
size sequences that are uniform for all paths. The estimates of 
the dominating local error term are based on values of the 
deterministic term and do not cost additional evaluations of 
the coefficients of the SDE or their derivatives. Though 
having the lowest order of convergence, the Euler-Maruyama 
scheme completely avoids forming multiple stochastic 
integrals, noticeably improving the simulation speed, 
especially considering the large number of simulations needed 
to approximate small probabilities. However, as the order of 
the Euler-Maruyama method is low, the numerical results are 
inaccurate unless a small stepsize is used. 



B. Deterministic Milstein Scheme 

General stochastic Taylor schemes can be formulated 
compactly using hierarchical sets of multiply indices with 
iterated multiply stochastic integrals and iterated application 
of the differential operators to the coefficient function. The 
multiple stochastic integrals which they contain provide more 
information about the noise processes within discretization 
subintervals and this allows an approximation of higher order 
to be obtained. The Milstein scheme differs from the Euler 
scheme by an additional correction term for the stochastic part, 
which includes double stochastic integrals. The above 
procedure indicates the general pattern: the higher order 
schemes achieve their higher order through the inclusion of 
multiple stochastic integral terms; the coefficients of the 
scheme involve partial derivatives of the SDE coefficient 
functions; a scheme may have different strong and weak 
orders of convergence; and, the possible orders for strong 
schemes increase by a fraction ½, whereas possible orders for 
weak schemes are whole numbers. The higher order schemes 
require adequate smoothness of the deterministic and 
stochastic coefficients and sufficient information about the 
driving Wiener processes, which is contained in the multiple 
stochastic integrals. Additionally, in higher order strong 
Taylor approximations derivatives of the deterministic and 
stochastic coefficients have to be calculated at each step.  

In this paper, to adapt the Milstein scheme to the SDE (2), 
we apply this method in such a way that it implicitly realizes a 
Milstein scheme for the inherent SDE. Except for higher order 
terms this is realized by  
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In the last term the Jacobian Adx+hex of the previous iterate 
can be reused. An upper bound for the pathwise error of the 
Milstein method is determined using the Doss-Sussmann 
approach to transform the stochastic differential equation and 
the Milstein scheme to a random ordinary differential equation 
and a corresponding approximation scheme, respectively. The 
pathwise approximation of random ordinary differential 
equations is considered in [10], where the Euler and Heun 
methods are analyzed. Moreover, it is shown that the classical 
convergence rates of these schemes can be retained by 
averaging the noise over the discretization subintervals. In [11] 
it is shown that the explicit Euler-Maruyama scheme with 
equidistant step size 1/h converges pathwise with order ½-ε for 
arbitrary ε>0. Hence, the pathwise and the mean-square rate of 
convergence of the Euler method almost coincide. 

 

C. Noise Correlation Function 

If Xt is a Gaussian stochastic process, then it is completely 
characterized by its mean and correlation function. From Itô’s 
theorem on stochastic differentials, noting that X and dw are 
uncorrelated, variance-covariance matrix K(t) of X(t) with the 
initial value K(0)=Ε[x xT]  can be expressed in differential 
Lyapunov matrix equation form as [12] 
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Note that the mean of the noise variables is always zero for 
most integrated circuits. In view of the symmetry of K(t), (6) 
represents a system of linear ordinary differential equations 
with time-varying coefficients. To obtain a numerical solution, 
(6) has to be discretized in time using an Euler-Maruyama or 
Milstein method. If backward Euler is applied to (6), the 
differential Lyapunov matrix equation can be written in a 
special form referred to as the continuous-time algebraic 
Lyapunov matrix equation 
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K(t) at time point tr is calculated by solving the system of 
linear equations in (7). Such continuous time Lyapunov 
equations have a unique solution K(t), which is symmetric and 
positive semidefinite. Several iterative techniques have been 
proposed for the solution of the algebraic Lyapunov matrix 
equation (7) arising in some specific problems where the 
matrix Pr is large and sparse [13]-[14], such as the Bartels-
Stewart method [15], and Hammarling’s method [7], which 
remains the one and only reference for directly computing the 
Cholesky factor of the solution K(tr) of (7). Large dense 
Lyapunov equations can be solved by sign function based 
techniques [16] or by iterative approaches [17]. Krylov 
subspace methods, which are related to matrix polynomials 
have been proposed [18] as well.  

In this paper, we apply a low rank version of the iterative 
method, which is related to rational matrix functions. The 
postulated iteration for the Lyapunov equation (7) is given by 
K(0) = 0 and 
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for i = 1,2,… This method generates a sequence of matrices Ki 
which often converges very fast towards the solution, provided 
that the iteration shift parameters γi are chosen (sub)optimally. 
For a more efficient implementation of the method, we replace 
iterates by their Chlesky factors, i.e., Ki=L iLi

H and reformulate 
in terms of the factors Li. The low rank Cholesky factors Li are 
not uniquely determined. Different ways to generate them 
exist [19]. Note that the number of iteration steps imax needs 
not be fixed a priori. However, if the Lyapunov equation 
should be solved as accurate as possible, correct results are 
usually achieved for low values of stopping criteria, which are 
slightly larger than the machine precision. 



IV.  EXPERIMENTAL RESULTS 

The proposed method and both adaptive numerical methods 
have been implemented in Matlab. All the experimental results 
are carried out on a single processor Linux system with Intel 
Core 2 Duo CPUs with 2.66 GHz and 3 GB of memory. The 
proposed method solves the set of linear time-varying 
equations (6) including the noise content description to find 
the steady state value of the time-varying covariance matrix. 
This gives the variance at the output node and its cross-
correlation with other nodes in the circuit, which makes it 
possible to evaluate the devices that most affect a particular 
performance, so that design efforts can be addressed to the 
most critical section of the circuit. The covariance matrix is 
periodic with the same period as either the input signal (e.g., 
translinear circuits) or the clock (in circuits such as dynamic 
logic).  

The effectiveness of the proposed approaches was evaluated 
on several dynamic circuits exhibiting different distinctive 
features in a variety of applications. As a representative 
example of the results that can be obtained, we show an 
application of noise analysis to the characterization of 
dynamic logic gates and dynamic latch comparators fabricated 
in standard 45 nm CMOS technology (Figure 1 and Figure 2). 
Circuits designed using dynamic logic styles can be 
considerably faster and more compact than their static CMOS 
counterparts. Nevertheless, the absence of a static pull-up 
chain makes these dynamic circuits susceptible to input noise, 
power and ground bounce, leakage, and charge-sharing during 
the evaluate phase if the outputs are not being pulled down 
(Figure 1). Besides reducing gate noise margin due to possibly 
lowered supply voltage, the power and ground voltage 
mismatch between a driver gate and a receiver gate can 

translate to a dc noise at the input of the receiver. Noise 
presented at the inputs of a logic gate is primarily caused by 
the coupling effect among adjacent signal wires. Similarly, 
charge sharing reduces the voltage level at the dynamic node 
causing potential false switching of a dynamic logic gate. 
Without the feedback keeper in these circuits, the gates would 
have zero noise rejection and the dynamic nodes will 
discharge completely given enough time. The feedback keeper 
placed on the dynamic node maintains the charge on that node, 
giving the gate some degree of noise-rejection. The noise 
rejection capability of the circuit depends on the relative sizes 
of the transistors in the dynamic gate and the feedback keeper. 
However, note that if the dynamic node incorrectly discharges 
past a certain point, the result is irreversible and incorrect 
computation will result.  

The concept of a dynamic comparator exhibits potential for 
low power and small area implementation and, in this context, 
is restricted to single-stage topologies without static power 
dissipation. A widely used dynamic comparator is based on a 
differential sensing amplifier [20] is shown in Figure 2a). In 
addition to the mismatch sensitivity, the latch is also very 
sensitive to an asymmetry in the load capacitance. This can be 
avoided by adding an extra latch or inverters as a buffering 
stage after the comparator core outputs. A fully differential 
dynamic comparator based on two cross-coupled differential 
pairs with switched current sources loaded with a CMOS latch 
is shown in Figure 2b) [21]. Because of the dynamic current 
sources together with the latch, connected directly between the 
differential pairs and the supply voltage, the comparator does 
not dissipate dc-power. Figure 2c) illustrates the schematic of 
the dynamic latch given in [22], where the dynamic latch 
consists of pre-charge transistors, a cross-coupled inverter, a 
differential pair and a switch. 
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                 Figure 1: Dynamic logic gate, a) Leakage currents, b) Supply noise, c) Input noise, and d) Charge sharing 
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In the simulation we assumed that the time series x are 
composed of a smoothly varying function, plus additive 
Gaussian white noise ξ, and that at any point x can be 
represented by a low order polynomial (a truncated local 
Taylor series approximation). The amount of noise introduced 
for any electrical device in the circuit corresponds to the 
current noise sources, which are included in the models of the 
integrated-circuit devices  

2 ( ) ( )th shot e Di kT R t i q I tξ ξ= =   (9) 

where T is the temperature, k is Boltzmann’s constant, qe is the 
elementary charge, and ID is the current through junction. 
Figure 3 reports the point-by-point sample mean of the Euler-
Maruyama solutions of the Itô SDE (2) and their empirical 
95% confidence bands (from the 2.5th to the 97.5th percentile; 
outer bands, dashed lines). Figure 4 is similar as Figure 3 but 
refers to the Milstein solution of the Itô SDE (2). When the 
analytic solution of the SDE is known, the (average absolute) 
error at time T, depending on the desired number of 
simulations R, can be computed as [8] 
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were X(t,r) and y(t,r) denote the value of the analytic solution 
at time t in the r-th trajectory and the value of the numerical 
solution for the chosen approximation scheme at time t in the 
r-th trajectory, respectively. Figure 5 compare the Euler-
Maruyama solutions (dotted lines) of the Itô SDE (2) with the 
corresponding adapted Milstein solutions (solid lines) and the 
analytic solutions (dashed lines): the adapted Milstein and the 
analytic solutions are so close that they appear practically 
undistinguishable. For the calculation of the error, the analytic 
solution and the numerical solution must be computed on the 
same Brownian path (i.e. using the same sequence of 
pseudorandom numbers). At time T=1 the Euler-Maruyama 
method for the Itô SDE (2) implies an average error equals to 
1.048×10-2, while the adapted Milstein scheme for the Itô SDE 
implies an average error of 5.962×10-5. These results show 
that the Milstein method is more accurate, although the Euler-
Maruyama method is faster: 27% and 11% in comparison with 
classical Milstein method and proposed adapted Milstein 
method, respectively. Descriptive statistics are reported with 
respect to the simulated values at the endpoint t: e.g. for the 
Euler-Maruyama approximation of the Itô SDE we have, 
Ε(Xt)≈1.161 where E(.) denotes expectation, Var(Xt) ≈0.367, 
Median(Xt)=1.029, etc. One example of the estimated noise 
variance (obtained at the output node of the dynamic logic 
gate) is illustrated in Figure 6. In comparison with 1500 Monte 
Carlo iterations, at any of the circuit nodes, the difference is 
less then 1.1% and 3.2% for mean and variance, respectively, 
while achieving considerable cpu-time reduction (32.4 sec 
versus 2.1 sec). Similarly, for dynamic latch comparators [20]-
[22], the difference is less then 1.1%, 1.0% and 1.1% for mean, 
and 2.9%, 3.1% and 3.0% for variance, respectively. 
Correspondingly, the achieved speed gain is 14, 16 and 15 
times. For the adapted Milstein method, in comparison with 

1500 Monte Carlo iterations, the difference for dynamic logic 
gate is less then 0.2% and 0.8% for mean and variance, 
respectively, with 14 times cpu-time reduction. Similarly, the 
achieved speed gains for dynamic latch comparators [20]-[22] 
are 12, 14 and 13 times, while the precision is within 0.3%, 
0.2% and 0.3% for mean, and 0.7%, 0.9% and 0.8% for 
variance. Consequently, the adapted Milstein method realizes 
three times speed increase in comparison with classical 
Milstein method.  

For the recursive algorithm presented here it is observed 
that a faster lowest level kernel solver (with suitable block 
size) leads to an efficient solver of triangular matrix equations. 
For models with large dimension usually the matrix Pr has a 
banded or a sparse structure and applying the Bartels-Stewart 
type algorithm becomes impractical due to the Schur 
decompositions (or Hessenberg-Schur), which cost expensive 
O(N3) flops. In comparison with the standard Matlab function 
lyap.m, the cpu-time shows that computing the Cholesky 
factor directly is faster by approximately N flops. 
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Figure 3: Itô SDE: normalized mean and 95% confidence 

bands of the Euler-Maruyama approximation  
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bands of the Milstein approximation  
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Figure 5: Euler-Maruyama vs Milstein vs analytic solution 
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Figure 6: Estimation of noise variance. 
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Similarly, when the original matrix equation is real, using 

real arithmetic is faster than using complex arithmetic. Hence, 
we resort to iterative projection methods when the matrix is 
large. The approximate solution of the Lyapunov equation is 
given by the low rank Cholesky factor L, for which LLH~K. L 
has typically fewer columns than rows. In general, L can be a 
complex matrix, but the product LLH is real. More precisely, 
the complex low rank Cholesky factor delivered by the 
iteration is transformed into a real low rank Cholesky factor of 
the same size, such that both low rank Cholesky factor 
products are identical. However, doing this requires additional 
computation. The iteration is stopped after a priori defined 
iteration steps (Figure 7). 

V. CONCLUSIONS 

Statistical simulation is one of the foremost steps in the 
evaluation of successful high-performance IC designs due to 
circuit noise that strongly affect devices behavior in today’s 
deep submicron technologies. As circuit noise is modeled as 
non-stationary process, Itô stochastic differentials are 
introduced as a convenient way to represent such a process. 
Two adaptive deterministic numerical integration methods, 
namely, the Euler-Maruyama and adapted Milstein schemes, 
are proposed to find a numerical solution of Itô differential 
equations. Additionally, an effective numerical solution for a 
set of linear time-varying equations defining the variance-
covariance matrix is found. The effectiveness of the proposed 
approaches was evaluated on several dynamic circuits. As the 
results indicate, the suggested numerical method provides 
accurate and efficient solutions of stochastic differentials for 
noise analysis. 
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