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Rate-Constrained Noise Reduction in Wireless
Acoustic Sensor Networks

Jamal Amini, Richard C. Hendriks, Richard Heusdens, Meng Guo and Jesper Jensen

Abstract—Wireless acoustic sensor networks (WASNs) can be
used for centralized multi-microphone noise reduction, where
the processing is done in a fusion center (FC). To perform the
noise reduction, the data needs to be transmitted to the FC.
Considering the limited battery life of the devices in a WASN,
the total data rate at which the FC can communicate with the
different network devices should be constrained. In this paper,
we propose a rate-constrained multi-microphone noise reduction
algorithm, which jointly finds the best rate allocation and
estimation weights for the microphones across all frequencies.
The optimal linear estimators are found to be the quantized
Wiener filters, and the rates are the solutions to a filter-dependent
reverse water-filling problem. The performance of the proposed
framework is evaluated using simulations in terms of mean
square error and predicted speech intelligibility. The results show
that the proposed method is very close in performance to that
of the existing optimal method based on discrete optimization.
However, the proposed approach can do this at a much lower
complexity, while the existing optimal reference method needs a
non-tractable exhaustive search to find the best rate allocation
across microphones.

Index Terms—Wireless acoustic sensor networks, multi-
microphone noise reduction, rate-distortion trade-off.

I. INTRODUCTION

W IRELESS acoustic sensor networks (WASNs) can
provide increased spatial diversity [1], [2], leading

to better noise reduction performance compared to single-
microphone noise reduction systems. As a realistic example,
consider binaural hearing aids (HAs), potentially extended
with additional assistive devices, collaborating with each other
through a wireless link [3]. Thanks to the increased number
of microphones as well as the increased spatial diversity, they
can enhance the speech intelligibility and quality for hearing-
impaired listeners [4], [5]. This can be achieved by performing
the noise reduction (estimation) process in a distributed way,
e.g., [6]–[8] or by aggregating the microphone observations
of the network nodes at a fusion center (FC) followed by
estimation of the source of interest and suppression of the
environmental noise. In the case of an FC, in practice, one
of the nodes in the network (e.g., one of the HAs) could be
selected as the FC.
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One common approach for noise reduction is the multi-
channel Wiener filter (MWF) [9], which is the linear minimum
mean square error (MMSE) estimator [10], [11]. Although the
original typical MWF considers situations where all micro-
phones are integrated into the same device, many examples
exist, where the microphones are distributed over multiple
wirelessly connected devices. A well-known example is the
binaural MWF [11]–[14], where the microphone recordings
of both HAs are combined to calculate two target signal
estimates, one for each ear of the user. Another more general
example can be found in [15] where an MWF-based filter is
proposed for spatially distributed microphones. Note that in
all these methods, the microphone signals are assumed to be
available error free at the fusion center.

To limit the scope of this work, we consider the situation
where the processing of the microphone signals in the WASN
is performed in an FC. To combine the observations at the
FC, the actual (realization of the) microphone signals must
be transmitted to the FC. As the transmission powers of the
devices may be limited due to limited battery life-time, the
data needs to be compressed/quantized at a certain data rate.
The process of quantization, however, introduces errors in the
representation of the microphone signals, and therefore errors
in the final target signal estimation. This introduces a trade-
off between the data rate and the estimation accuracy (or
error) [16], which links the noise reduction problem to the
data compression problem.

Several rate-constrained beamforming (noise reduction) al-
gorithms have been introduced in the literature to consider
the rate of transmission as a resource constraint in the beam-
forming process, e.g., [16]–[19]. Assuming all sources to
be jointly Gaussian random processes and using Wyner-Ziv
coding [20], [21], a binaural rate-constrained beamformer has
been proposed in [17, Sec. III-A]. This beamformer is limited
to two devices (i.e., two HAs), which efficiently trades off the
data rate against the beamforming performance. The method
inevitably assumes that the joint statistics (for example cross-
correlations) between the two HAs are known in both devices,
which is limiting in practice. Moreover, an infinitely long
sequence with a sophisticated decoder is needed to implement
the proposed framework, which essentially provides a bound
on the possible performance. Finally, this method is limited
to the case of only two processing nodes (potentially with
multiple microphones per node). The more generalized setup,
which may include assistive devices is not considered in this
method. Unlike [17, Sec. III-A], sub-optimal rate-constrained
beamformers have been proposed in [17, Sec. III-B], [16],
[18], [19], which do not suffer from the requirement that the
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joint statistics should be known. Typically, these approaches
also only consider two collaborating devices. Although these
methods are simpler and computationally less expensive than
[17, Sec. III-A], they combine all the observations from one
device (HA), say, device A, into a single-channel observation,
without considering the correlation of the HA observations
with the observations from the other HA, say device B, and
transmit it to the other device (which serves as an FC).
With such a sub-optimal combination, important information
may get lost and the performance does not approach the
optimal performance, not even asymptotically, at infinitely
high data rates [16]. In fact, due to the local combination of
the multiple realizations into a single realization, the acoustic
scene dependency is not taken into account in the existing
sub-optimal approaches.

Assuming the WASN consists of more than two devices
(e.g., two hearing aids and multiple additional assistive de-
vices), in this paper, we obtain a generalized rate-constrained
noise reduction formulation, which can be interpreted as a
chief executive officer (CEO) problem (as in information
theory), first introduced in [22]. The FC can be thought of
as a CEO and the microphones as agents. Each agent records
a version of the signal of interest to be transmitted to the
FC. As the devices in the WASN have limited battery life-
time, and that the power usage is proportional to the data rate
(measured in bits) [23], there will be a limited bit rate available
for transmitting/receiving the information to/from the agents.
Agents should be prioritized (for the estimation task) based
on the importance of the information they may have about
the target signal. In addition, in our setup, as microphone
signals may have generally non-flat power spectral densities,
the rate-constrained estimation problem should be frequency
dependent. Therefore, depending on the acoustic scene, it is
reasonable to share the total data rate across different agents
and different frequency components. In [24] a similar problem
is studied for rate allocation and strategy selection in an
operational rate-constrained beamforming task, given discrete
sets of strategy candidates and operating rates. The method
uses a discrete optimization algorithm, based on the Lagrange
multiplier technique [25], to select the best candidates and
operating rates in different frequencies. However, because of
the discrete nature of the optimization problem, an exhaustive
search is necessary for the rate allocation across agents, which
is practically affordable only for a small-size microphone
array.

In this paper, we propose a joint quantization-estimation
algorithm for the rate-constrained noise reduction task. We
consider a linear estimation task at the FC and propose an
optimization problem to both, allocate the total bit rate budget
to different microphones in different frequencies (i.e., the
quantization part), as well as to find the best filter weights (i.e.,
the estimation part), minimizing a rate-constrained estimation
error. Unlike [24] which treated the problem sequentially with
separate quantization and estimation tasks, in this work we
consider the joint quantization-estimation problem. Moreover,
unlike the exhaustive search for rate allocation across mi-
crophones proposed in [24], which is only good for small
microphone arrays, we propose to optimize the rate allocations

across frequency and space (i.e., devices). The proposed
solution is scalable to arbitrarily big microphone arrays. For an
MSE criterion, under certain assumptions, the optimal weights
are found to be rate-constrained Wiener filter coefficients and
the optimal rate allocation is the solution to a reverse ”water-
filling” problem. An MSE-based performance measure and an
instrumental speech intelligibility measure are used to evaluate
the proposed framework and the proposed method outper-
forms equal/random rate allocation strategies. Moreover, the
proposed method performs almost as good as the optimal non-
polynomial discrete optimization that involves the infeasible
exhaustive search [24], in most practical scenarios.

The paper is organized as follows. In Sec. II-A the acous-
tical signal model is stated and the linear estimation task is
introduced in Sec. II-B. The quantization aware beamforming
problem is introduced in Sec. II-C. In Sec. II-D the proposed
rate-constrained noise reduction problem formulation is pre-
sented in a unified framework and the proposed solution is
described in Sec. III. The performance analysis of the proposed
and existing methods is carried out in Sec. IV. Finally, Sec.
V concludes the paper.

II. PROBLEM STATEMENT

A. Signal Model
We consider a microphone array consisting of M micro-

phones, assumed to be embedded in different devices (i.e.,
HAs and/or assistive devices) placed at potentially different
locations in space. Devices (agents) only communicate with
an FC (and not with each other). Only the FC has access
to the joint statistics. Each device can be equipped with more
than one microphone. In this paper, it is assumed that for each
device, the unprocessed microphone signals will be transmitted
to the FC without pre-filtering stages, i.e., the microphone
signals per device are not combined (pre-filtered) to a single
signal. All microphones capture, in addition to the interferers,
their version of the target speech signal, filtered by the acoustic
channel, which is characterized by the room impulse response.
In the short-time frequency transform (STFT) domain, we
denote the target signal by Si ∈ C, with i the discrete
frequency bin index. For notational convenience, the time-
frame index is left out. The target speech is degraded by
interfering noise, which might originate from, e.g., interfering
point sources, diffuse noise, and/or microphone self-noise.
The interfering noise observed at a particular microphone
and at a particular frequency is indicated by Nij ∈ C, with
j = 1, . . . ,M being the microphone index. The signals Si and
Nij , are assumed to be additive and mutually uncorrelated.
Therefore, the microphone signal model can be written as

Yij = AijSi +Nij ∈ C, (1)

where Aij ∈ C is the acoustic transfer function (ATF) between
the target signal and the jth microphone. The signal model
can be rewritten in vector notation by stacking all microphone
signals in a vector, as

yi = aiSi + ni = xi + ni ∈ CM , (2)

where
yi = [Yi1, ..., YiM ]T,
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and similarly for ai and ni, where the superscript (·)T denotes
the transpose operator on vectors/matrices. Since the signals
Si and Nij are assumed to be uncorrelated, the power spectral
density (PSD) matrix Φyi

= E[yiy
H
i ] of the vector yi is given

by
Φyi

= Φxi
+ Φni

∈ CM×M , (3)

where

Φxi
= E[xix

H
i ] = ΦSi

aia
H
i , Φni

= E[nin
H
i ], (4)

with ΦSi = E[|Si|2] ∈ R the PSD of the clean speech, and E[·]
the expectation operator. The conjugate transpose operator on
complex vectors/matrices is indicated by the superscript (·)H.

B. Linear Estimation Task

One way to increase speech intelligibility and quality of
noisy signals is spatial filtering. The goal is to estimate
the signal of interest at the FC by combining all the noisy
observations into one single signal, such that a fidelity criterion
is satisfied. In this paper, we consider linear estimation, i.e.,
Si is estimated as Ŝi = wH

i yi ∈ C, with wi ∈ CM the weight
vector. Minimizing the MSE, the best linear MSE estimator
weights, say w?

i , are given by the MWF [10]

w?
i = Φ−1

yi
ΦyiSi , i = 1, . . . , F, (5)

where F is the number of frequency bins and ΦyiSi
∈ CM

is the CPSD vector between the observation vector yi and
the source Si, which is given by E[yiS

∗
i ] = aiE[|Si|2]. The

superscript (·)∗ denotes the conjugate operator. Therefore, the
optimal estimate, denoted by Ŝ?i , is given by Ŝ?i = w?H

i yi.
Finally, the minimum MSE is computed as

D =
1

F

F∑
i=1

E[|Si − Ŝ?i |2] =
1

F

F∑
i=1

Φdi , (6)

with

Φdi =E[|Si − Ŝ?i |2]

=E[|Si −w?H
i yi|2]

=ΦSi
−ΦH

yiSi
Φ−1

yi
ΦyiSi

, i = 1, . . . , F.

To compute the MWF output Ŝ?i , the noisy signal realizations
should be available error-free at the FC. In practice, only a
compressed/quantized version of the contralateral noisy signals
are available. These signals are compressed at a certain rate,
say rij bits per sample (bps). This leads to a modified signal
model including quantization noise, as explained in the next
subsection.

C. Quantization Aware Beamforming

As mentioned in the previous part of this section, the
microphone signals are compressed prior to transmission to
the FC. In this paper, we assume that the signals are being
quantized using a uniform quantizer, which will be briefly
explained in the following.

Let us consider an arbitrary signal x that is quantized,
and the quantized version is denoted by x̃, with quantization
noise e = x − x̃. Under high bit rate assumptions or by

applying subtractive dithering to the signal to be quantized (at
lower rates) [26], [27], the quantization error (noise) e will be
uncorrelated to the signal x and will be uniformly distributed
with variance σ2

e = ∆2

12 . Here ∆ = 2xmax

2r is a step size,
which depends on the range of the signal (maximum absolute
value xmax) and the quantization rate r. Applying this to the
beamforming task, the quantization noise is taken into account
and the signal model in (1) can be modified as

Ỹij = Yij + Eij = AijSi +Nij + Eij ∈ C, (7)

where Ỹij is the quantized noisy signal and Eij is the
quantization noise. Similar to (2), using vector notation, we
then have

ỹi = yi + ei = aiSi + ni + ei ∈ CM , (8)

where the quantization noise vector ei =
[Ei1, Ei2, · · · , EiM ]T is assumed to be uncorrelated to
the microphone signal vector yi, which is valid under the
above-mentioned assumptions [26], [27]. Therefore, the
CPSD matrix of the quantization noise vector ei will be
diagonal with elements

ΦEij =
∆2

12
=

(Y max
ij )2

3 22 rij
=

kij
22 rij

, (9)

where kij =
(Y max

ij )2

3 . At the FC, the signal of interest Si is
estimated, given the compressed noisy microphone signals ỹi,
as

Ŝi = wH
i ỹi. (10)

The estimator Ŝi is a function of the estimation parameters
wi and the rates rij . In the next part of this section, we
will propose a problem formulation to address the problem of
finding the above-mentioned parameters, by minimizing the
estimation error.

D. Rate-Distortion Trade-off in Noise Reduction Problems

As argued in the previous part of this section, at the FC,
signals are available at a certain operating rate, say rij (bps). In
fact, the receiver at the FC has a limited total capacity, say Rtot,
due to limitations on transmission capabilities, to communicate
with its agents [22] (here, microphones). Depending on this
resource Rtot and the actual acoustic scene, different rate
allocations across frequency and space are optimal [24]. In
this paper, we address the problem of rate-constrained noise
reduction in order to find the optimal rate allocation to each
microphone signal at each specific frequency bin. We propose
the following joint quantization-estimation problem.

1) Proposed Problem Formulation: We are given a set of
operating rates Q = {R | 0 ≤ rij ≤ ∞}, where the matrix

R =


r11 r12 . . . r1M

r21 r22 . . . r2M

...
...

. . .
...

rF1 rF2 . . . rFM

 ∈ RF×M .

includes rates rij to be allocated to each frequency bin i and
microphone j. Let the distortion function D(R) be defined as
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the averaged (over frequency) power spectral density of the
estimation error, given the rates, that is

D(R) =
1

F

F∑
i=1

d(ri), (11)

where

d(ri) = E[|Si − Ŝi|2|ri], ri ∈ RM ,

denotes the PSD of the estimation error at the ith discrete
frequency bin, given the rate vector ri = [ri1, . . . , riM ]T,
which is the ith row of the matrix R and includes the
rates allocated to the different microphones for the specific
frequency i. Furthermore, let R(R) simply be defined as the
sum-rate over all bins and microphones, given by

R(R) =

F∑
i=1

M∑
j=1

rij . (12)

Then, the problem is defined as minimizing the estimation
error, while satisfying the total budget Rtot on the rates. That
is

min
R∈Q

D(R)

subject to R(R) ≤ Rtot.
(13)

Assuming that the joint statistics are known only at the FC,
and using (8) and (10), the distortion function d(ri) can be
further parameterized as a function of the estimator weights
wi as

d(ri,wi) = E[|Si − Ŝi|2|ri]
= E[|Si −wH

i ỹi|2|ri]
= E[|Si −wH

i aiSi −wH
i ni −wH

i ei|2|ri]
= |1−wH

i ai|2ΦSi +wH
i Φniwi+wH

i Φei(ri)wi.
(14)

The diagonal matrix Φei
(ri) is the CPSD matrix of the

quantization noise with elements given by (9). Based on (9)
and the fact that Φei

(ri) is diagonal, the distortion function
d(ri,wi) can be rewritten as

d(ri,wi) = |1−wH
i ai|2ΦSi

+ wH
i Φni

wi +

M∑
j=1

|wij |2 kij
22 rij

.

(15)
We define the weight matrix W ∈ CF×M as

W =


wT

1

wT
2
...

wT
F

 =


w11 w12 . . . w1M

w21 w22 . . . w2M

...
...

. . .
...

wF1 wF2 . . . wFM

 ∈ CF×M ,

i.e., the ith row of W contains the beamformer coefficients for
frequency bin i. Substituting (15) into (11), and then into the

original problem formulation (13), the reformulated problem
can be rewritten as

min
R,W

1

F

F∑
i=1

|1−wH
i ai|2ΦSi

+wH
i Φni

wi+

M∑
j=1

|wij |2 kij
22 rij


s.t.

F∑
i=1

M∑
j=1

rij ≤ Rtot,

rij ≥ 0.
(16)

Note that the estimation error function in (15) includes three
terms: 1) the target signal distortion, i.e., |1−wH

i ai|2ΦSi 2)
the residual noise power, i.e., wH

i Φniwi and 3) the residual
quantization noise, i.e.,

∑M
j=1

|wij |2 kij
22 rij

. The first two terms
are only functions of the weights and the last term is jointly
a function of both the weights and the quantization rates. In
fact, as the last term in (15) is a summation of ”quadratic-
over-nonlinear” functions, which are non-convex functions,
the problem in (16) is a non-convex optimization problem.
However, fixing W or R, the problem will be convex in the
remaining variable (component-wise convex).

III. PROPOSED SOLUTION

In the following, we propose a solution to the non-convex
problem in (16), presented in the previous section. The
third term in (15), which is a summation of ”quadratic-over-
nonlinear” functions, causes the non-convexity in the objective
function. Nevertheless, we can write the necessary Karush-
Kuhn-Tucker (KKT) conditions [28] for the problem in (16)
to find the necessary optimality conditions. It can be shown
(see Appendix A) that the solution to (16) lies on the boundary
of the feasibility set defined by the global budget constraint
(first constraint in (16)). As a consequence, we can replace
the inequality constraint on the total bit budget by an equality
constraint. With this, the Lagrangian function is given by

L(R,W, λ,V) =
1

F

F∑
i=1

[ |1−wH
i ai|2ΦSi

+ wH
i Φni

wi

+

M∑
j=1

|wij |2 kij
22 rij

]+ λ(
F∑
i=1

M∑
j=1

rij −Rtot)−
F∑
i=1

M∑
j=1

vijrij ,

(17)
where the matrix V ∈ RF×M consists of non-negative entries
vij which denote the Lagrangian multipliers, responsible for
the element-wise non-negativity constraints, i.e., rij ≥ 0. The
Lagrangian multiplier λ is to assure the total rate constraint is
met with equality.

In the following proposition, the solution to the KKT con-
ditions w.r.t. the problem in (16) and the Lagrangian equation
(17) is given as a system of equations.

Proposition. Minimizing the constrained problem in (16)
based on the Lagrangian function in (17), the parametric
optimal weights and the optimal rates are given as

1) w?
i (r

?
i ) = Φ−1

ỹi
ΦỹiSi(r

?
i ),

2) r?ij(λ
′?, w?ij) = max(1

2 log2(
|w?

ij |
2 kij

λ′? ), 0),

(18)
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where i = 1, . . . , F, j = 1, . . . ,M , and λ′? = λ?

2 ln2 is a
parameter, which satisfies the equality constraint

F∑
i=1

M∑
j=1

rij(λ
′?) = Rtot.

Proof. See Appendix A.

Note that the rates are zero-valued for λ′? ≥ |w?ij |2 kij .
The operator max(·, 0) assures that the rates are non-negative,
satisfying the second set of inequality constraints in (16).

Looking at the system of equations in (18), the optimal
weights w?

i are the rate-dependent multi-channel Wiener filter
coefficients (first set of equations) and the optimal rates r?ij are
the solution to the weighted reverse water-filling problem. In
fact, the set of Wiener equations are responsible for the target
estimation part and the rate equation for the quantization part
(rate allocation). It is clear from (18) that the rate allocation
is done across both frequencies and microphones, depending
on both the microphone signal power (which is related to kij)
and the contribution of components to the estimation process
(which is related to |w?ij |2). The frequencies and devices that
contribute most to the target estimation will be allocated more
bits. Similar to the classical water-filling problems [23], [29],
the components for which |w?ij |2 kij ≤ λ′? will be allocated
zero bits.

One way to solve (18) is to apply alternating optimization
[30]. First, the rates are initialized as R0, for example by
an equal rate allocation where all components start to be
allocated equal rates. Second, the optimal weight functions are
computed, given R0, to find the updated weight matrix W1,
where Wn denotes the updated matrix variable at nth iteration.
Then the updated weights W1 are used to compute the updated
rates R1. In this way, the equations are computed iteratively
until a certain stopping criterion is met. As explained in Sec.
II-D1, since the objective function in (16) is component-wise
convex in the variables W and R, as argued in [30], [31],
any limit point (solution after sufficient iterations) is a critical
point. Note that since the objective function is not jointly
convex in W and R, this critical point is not necessarily
globally optimal. However, as confirmed by the simulation
experiments in Sec. IV, the performance of the proposed
method is almost as good as the (non-tractable) exhaustive
search (for rate allocation across microphones) [24], for some
representative example acoustic scenarios.

IV. PERFORMANCE EVALUATION

In this section, we perform simulations in several exam-
ple acoustical scenarios to evaluate the performance of the
proposed and existing approaches, as a function of the total
communication rate Rtot.

In addition to predicted intelligibility by means of the short-
time objective intelligibility (STOI) measure [32], we use the
performance measure introduced in [17] and [16], which is
defined as the ratio of the target signal estimation MSE, when
there is no communication between the agents and the FC,
say D(0), to the MSE when the data is quantized before

×

++
x

y

-θ

Fig. 1: Typical acoustic scene. The two HA microphones, the
assistive microphone, the target signal, and the interferer are
indicated by the black ”+”, the blue ”×”, the green circle, and
the black triangle, respectively.

transmission, say D(R). The output gain with respect to the
beamformer (FC) is given by

GFC(R) =
D(0)

D(R)
, (19)

where D(·) is the MSE introduced in (11). D(0) denotes the
distortion when the devices do not communicate with the FC
(Rtot = 0). In this case, the distortion is computed based on
the local observations at the FC only.

A. Example Generalized Binaural HA Setup

The first example acoustic scene is illustrated in Fig. 1. The
binaural HA system includes two HA microphones (one per
HA), denoted by the black ”+” symbols, and are located with a
distance of 10 cm w.r.t. the origin ((xo, yo) = (0, 0)), along the
horizontal x-axis. The green circle indicates the target speech
source, located in front of the HA system (θ = 0◦), at a
distance of 3 m from the origin. In this paper, the location
angles are computed counter-clockwise starting from the look
direction. There is an assistive wireless microphone in this
setup which is denoted by the blue ”×” symbol, placed closer
to the target speech at an angle θ = 15◦ and a distance of 2.8 m
from the origin. The black triangle indicates the interfering
signal, located at a distance of 3 m from the origin at an angle
θ = −80◦, with a signal-to-interferer ratio (SIR) of 0 dB.
In addition, simulated internal microphone noise is added to
the microphone signals. The internal noise is assumed to be
uncorrelated across microphones and is added with a signal-
to-noise ratio (SNR) of 40 dB w.r.t. the target signal at the
reference point.

In this experiment, without loss of generality, the FC is cho-
sen to be the left side HA. Therefore, the left side microphone
signal is considered as the reference local observation and
the two other microphone signals as the agents’ observations.
The PSD of the target speech ΦS is estimated based on
Welch’s method, using a 512-points discrete Fourier trans-
form (DFT), computed frame-by-frame from 50% overlapping
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speech frames, using around 10 s of the Fs = 16 kHz sampled
speech signals taken from the ”CMU-ARCTIC” database [33].
A flat PSD Φn1(ω) over the interval ω ∈ [−π, π] is assumed
for the point noise source (interfering signal). Under the free-
field assumption, the ATFs are generated using Habets’ model
[34], in a non-reverberant environment. The non-reverberant
environment is chosen to get a more clear understanding of the
effect of the number and location of the point noise sources on
rate allocation behavior. Finally, the generated ATFs and the
estimated PSDs are used to calculate the corresponding cross
PSD matrices.

Based on the setup, the performance of the following
approaches are compared throughout this section:

• Equal Rate Allocation (2 Mics): Only the left-side and
the right-side microphones (two microphones in total)
are selected in this case (and thus not the assistive
microphone). Therefore, there is only one microphone
signal (from the right HA) which needs to be quantized
before transmission. In this case, the rates are equally
allocated over all frequencies.

• Equal Rate Allocation (3 Mics): All three microphones
are selected in this case. The rates are assumed to be
equally allocated over all frequencies as well as across
all microphones.

• Discrete Optimization OPT [24]: This method is based
on discrete optimization, and optimally allocates the rates
over all frequencies and across microphones. Note that,
in this method, an exhaustive search is done to find
the best allocations across the microphones, which is
computationally very expensive and not tractable for big
microphone arrays.

• Proposed (2 Mics): The proposed method described
in Sec. III. In this case, only the binaural setup (2-
Microphone setup) is considered, meaning that the as-
sistive microphone signal is not used. Therefore, the rate
allocation is optimized only across frequency.

• Proposed (3 Mics): The proposed method described in
Sec. III. In this case, all microphones are used. Therefore,
the rate allocation is optimized across both frequency and
across microphones.

• Remote Wyner Ziv (WZ) [17]: The binaural rate-
constrained beamforming presented in [17, Sec. III-A].
Note that only two processing nodes, i.e., in this setup
two HAs, can be used in this method, joint statistics are
needed at all processors (nodes) and impractical long-
block vector quantizers are assumed.

1) Output Gains: In this part, we compare the above-
mentioned approaches based on the performance measure in
(19). Fig. 2 shows the output gain GFC in dB as a function
of the normalized (over frequency) total bit rate budget. The
horizontal dash-dotted line denotes the performance of the
2-microphone MWF [11], [13], based on both the left and
right microphone signals. It is assumed here that the right side
observation is available (at an infinite rate) at the FC, i.e., with-
out quantization noise. This method serves as a performance
bound for the binaural setup. Similarly, the horizontal dashed
line denotes the performance of the 3-microphone MWF [11],
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Fig. 2: Output Gain [dB] versus total rate [bit per sample]
based on a generalized binaural setup in Fig. 1.

[13], where all microphone signals are used at an infinite
rate. As shown, the performance of all methods approaches
to the corresponding horizontal lines, at sufficiently high
rates. The proposed method outperforms significantly the equal
allocation strategies, as the rate allocation is optimized over
frequency. The performance of the remote WZ method is
computed based on the theoretical upper bound, described in
[17]. As shown, the performance curve of the remote WZ
method is upper-bounded by the 2-microphone MWF, as the
assistive microphone is not considered in this method.

In this example setup, the proposed (3 Mics) method
performs almost as good as the optimal discrete optimization
method, which uses an exhaustive search to find the best
allocations across microphones. Please note that, based on the
complexity analysis which will be explained in Sec. IV-D, the
computational complexity of the optimal discrete optimization
method grows dramatically by increasing the number of the
microphones. However, for the setup in Fig. 1 (with only
three microphones) we could perform the exhaustive search for
comparison. On average, the proposed alternating optimization
approach needs less than 10 iterations to converge to a
solution.

2) Rate Allocations Across Frequency: Based on the re-
sults, shown in Fig. 2, the rate distribution for each agent as
a function of frequency and total bit rate is shown in Fig.
3. As shown in Fig. 3b, with a very small total rate, only
lower frequency components are allocated non-zero rates. The
effect of very high-frequency components on the final target
estimation is negligible compared to the low-frequency com-
ponents, as they have small PSD values, and therefore less rate
is allocated. As the total rate increases, more high-frequency
components can contribute to the estimation process.

Comparing Fig. 3a and Fig. 3b, for a small total rate,
the right side microphone is barely used as the assistive
microphone signal contains more information about the target
signal (since it is located closer to the target source, based
on Fig. 1). Therefore, more rate is allocated to the assistive
microphone. As the total rate (total budget) increases, the right
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(a) Right-side microphone contribution.

Proposed Rate Allocation (Assistive Mic)
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(b) Assistive microphone contribution.

Fig. 3: Rate distributions as a function of frequency and normalized total budget.
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Fig. 4: An example acoustic scene: a general microphone array
is shown by the black ”+” symbols.

side microphone starts to contribute to the estimation process
on its most important frequency components. The sinusoidal
behavior of the rate distribution in Fig. 3a (at middle total
rate values) is related to the shape of the squared value of the
filtering weights (|wij |2) over frequency.

B. Example General WASN Configuration

In this simulation experiment, we consider the second
example acoustic scene, illustrated in Fig. 4. Five microphones
are randomly located in space. The black triangles denote the
interferers of which the number and location vary in different
scenarios, which will be described later in this section. There
is one target speech signal (Green circle) at (2 m, 30◦). In this
section, we consider the following three scenarios.
• Scenario 1: Only one interferer (point noise source).
• Scenario 2: Four interferers (point noise sources).
• Scenario 3: Four interferers along with diffuse noise.

The FC is assumed to be located at the origin as a reference
point (no local observations). For all scenarios, the interfering
signals’ power is chosen such that the SIR w.r.t. the target
signal at the FC is 0 dB. In all experiments, uncorrelated
internal noise is added to the microphone signals at 40 dB
SNR w.r.t. the FC. For all sources, the ATFs and the power

spectral densities are estimated/computed in a similar way as
in the previous setup, in a non-reverberant environment.

Based on the setup, shown in Fig. 4, the following methods
are compared:

• Discrete Optimization SUB [24]: This method is based
on discrete optimization, and optimally allocates the rates
over all frequencies. However, it assumes an equal rate
allocation across microphones, as the optimal exhaustive
search is very expensive and not tractable for big micro-
phone arrays.

• Discrete Optimization OPT [24]: This method is based
on discrete optimization, and optimally allocates the rates
over all frequencies and across microphones. Based on
our experiments and the complexity analysis, described in
the Sec. IV-D, the exhaustive search used in this approach
becomes intractable for more than five microphones.

• Proposed: The proposed method described in Sec. III.

1) Correlated Point Noise Sources: In this case, the sce-
narios 1 and 2 are considered. Scenario 1 contains only one
interferer located at (2 m,−60◦). Scenario 2 contains four
interferers located at (2 m, {−80◦,−60◦, 40◦, 85◦}). Similar
to Fig. 2, the output gains GFC in dB as a function of total
bit rate budget, are shown Fig. 5. Please note that at each
normalized total bit budget, the budget will be distributed
(maximally) across five microphones. For example, if the
normalized total budget is 30 bps, it means that on average 30
bps may be allocated across five agents, and not necessarily
six bps per agent. The dashed line denotes the performance
of the 5-microphone MWF (which is an upper bound on the
performance of the MSE-based methods), assuming all mi-
crophone signals are available at the FC, without quantization
noise.

The proposed algorithm is based on alternating optimization
which needs to be initialized. In the proposed-OneInit method,
the algorithm is initialized based on reverse water filling on
the power of the signals, assuming equal weights for all com-
ponents. As we are not (theoretically) necessarily guaranteed
to converge to the globally optimal solution, in the proposed-
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Fig. 5: Output Gain [dB] versus total rate [bit per sample] based on the second setup in Fig. 4.

MultiInit method, we also test the algorithm with multiple
initializations. Initially, the total rate is randomly distributed to
the components and the alternating optimization is carried out
for each random initializations. The procedure is repeated and
the allocation which results in a minimum distortion among
all random initializations is selected. The proposed method
with multiple initializations is very close, in performance, to
the optimal discrete optimization approach. However, even
with single initialization (proposed-OneInit) the performance
of the proposed-OneInit method is not far from the optimal
method. As shown in Fig. 5a, the proposed method performs
significantly better than the sub-optimal discrete optimization
method, as the optimal rates are also optimized across the
agents. The remote Wyner Ziv approach is not included in the
comparison, as it cannot consider more than two nodes, and
therefore, it is not suitable for a general WASN setup.

In scenario 2, in Fig. 5b, instead of one point source, the
scenario contains four interfering point sources. Increasing
the number point sources has an interesting effect compared
to the case of a single point source as in Fig. 5a. The
performance gap between the sub-optimal approach, where
the equal rate allocation is done across microphones, and the
optimal methods is reduced. This can be explained as follows.
Under mild differences in target signal powers captured by
microphones, increasing the number of point sources, will
reduce the spatial correlation (coherence) factor and makes
the microphone signals more equally important in the target
estimation process. Furthermore, in this case, all proposed and
optimal curves are almost on top of each other, meaning that
the proposed method managed to nearly achieve the optimal
performance.

2) Diffuse Noise: In this scenario, there is a simulated
diffuse noise along with four interferers. The diffuse noise is
simulated as a cylindrical source array around the microphone
array, for which the estimated spatial coherence function
reasonably resembles the theoretical spatial coherence function
between the microphone signals. Four interferers are located

TABLE I: Computational complexity order

Method Complexity

Discrete Optimization OPT [24] O(M3 F |A|)
Discrete Optimization SUB [24] O(M3 F q)
Proposed O(M3 F K+MF log(MF )K)

|A|=
(
M−1
M−1

)
+
(

M
M−1

)
+. . .+

(
q+M−2
M−1

)

at (2 m, {−80◦,−60◦, 40◦, 85◦}). The powers of the sources
are chosen such that the input signal to point noise and diffuse
noise ratio (SIDR) is approximately 0 dB at the FC.

Fig. 6 shows the output gains GFC in dB as a function
the total bit rate. The results show little difference between
all competing methods, as almost the same (power-wise)
impression of the environmental noise is received by each
agent, and the observations become spatially less correlated.
The sub-optimal discrete optimization, which is simple and
fast, is therefore a suitable approach in this scenario. All
proposed methods and the optimal method are almost on top
of each other, and are asymptotically optimal meaning that
the performance approaches that of the 5-microphone MWF
method at a sufficiently high rate.

As mentioned in Sec. II-D1, the joint statistics need to
be known only at the FC. Assuming that the statistics do
not change rapidly over the number of consecutive frames,
a piece of over-head information, which is needed to inform
the agents about their allocated rates, can be averaged out over
the frames, and hence, does not affect the proposed solution.

C. Computational Complexity

In this part, we compare the methods from a complexity
point of view. The computational complexity of the competing
methods in the previous part is listed in Table I, for a given
total rate Rtot. Variable q denotes the number of all possible
choices for the integer bit rate assigned to each frequency. Note
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Fig. 6: Scenario 3: Diffuse noise + four interferers.

that q generally may depend on the number of microphones
M so that it may increase by increasing the number of
microphones. The set A includes all possible allocations of the
rate across microphones, for each frequency. When computing
the cardinality |A|, it is assumed that the rate (per frequency)
can vary from zero bit to (q−1) bits. In the optimal discrete
optimization method (Discrete Optimization OPT), the exhaus-
tive search is done over the set A to find the best bit allocation
across microphones. In the sub-optimal discrete optimization
method (Discrete Optimization SUB), the total bit rate (for
each frequency) is distributed equally across microphones,
therefore, the exhaustive search is not necessary. The computa-
tional complexity of the proposed method is based on (18) for
K iterations. As shown, the proposed and sub-optimal methods
have polynomial complexity order w.r.t. M and F . For the
proposed method, for log (MF ) � M2 the second term in
the complexity order is dominant, therefore, the complexity
will be of order O(MF log(MF )) for one iteration (K=1).
For a small M , the complexity is comparable to that of an
FFT (complexity of order F logF ). In this case, the proposed
method does not have a significant extra complexity, compared
to FFT computations, which are unavoidable in frequency-
domain noise reduction algorithms.

The complexity (in logarithmic scale) as a function of the
number of microphones (M ) is shown in Fig. 7, for F = 512,
q = 32M , and K = 15 iterations over (18). As shown, the
optimal method is computationally much more expensive than
the other two methods. As shown in the simulations in the
previous subsections, the proposed method is very close to
the optimal method in terms of performance, although with
much lower complexity.

In scenarios with highly correlated microphone signals (for
example, scenario 1), there is a big performance gain in
optimizing rate allocation across microphones (compared to
the sub-optimal method). However, in scenarios with multiple
sources and diffuse noise, the microphone signals become less
correlated implying that the sub-optimal discrete optimization
method becomes closer to the optimal discrete optimization
method in terms of performance, with lower complexity.

3 4 5 6 7 8 9 10

# of microphones [M]

10

15

20

25

30

35

40

45

50

55

60

C
o

m
p

le
x

it
y

 [
L

o
g

a
ri

th
m

ic
]

Discrete Optimization OPT [24]
Discrete Optimization SUB [24]
Proposed

Fig. 7: Computational Complexity as a function of number of
microphones [M].

D. Speech Intelligibility

In this section, we compare the competing methods in terms
of speech intelligibility. Although all competing methods are
based on optimizing the MSE criteria (and not based on speech
intelligibility criteria) it is reasonable to see how they affect
the speech intelligibility as a function of the bit rate.

In this paper, we choose the STOI measure [32] to evaluate
the proposed method. Scenario 3 (as in the Sec. IV-B2) is
chosen here based on the example acoustic scene shown in
Fig. 4, which includes a simulated diffuse noise along with
four interferers located at (2 m, {−80◦,−60◦, 40◦, 85◦}). The
SIDR w.r.t. the FC is set to 0 dB and the SNR is set to 40 dB.
Uniformly distributed random realizations are added to the
microphone signals as quantization noises. The variances of
the quantization noises are computed using the corresponding
optimized rate allocations for different methods.

The STOI measure as a function of the total rate is shown in
Fig. 8. As shown, all curves approach (at high total rates) to the
black dashed line which is the asymptotic STOI value when
there is no quantization noise. Comparing Fig. 8 with Fig. 6, in
this specific scenario, the STOI gaps between the sub-optimal
discrete optimization method and the optimal methods are very
low. In fact, under uniform quantization assumptions, small
output gain differences between the competing methods at dif-
ferent total rates may not cause significant speech intelligibility
gaps. As shown in Fig. 8, the proposed method performs as
good as the optimal discrete optimization method in terms of
the STOI objective measure, at much lower complexity.

V. CONCLUSION

In this paper, we proposed an MMSE-based rate-constrained
noise reduction framework in wireless acoustic sensor net-
works (WASN) to jointly weight the contribution of the
remote-microphone signals to the linear estimation task and
allocate the bit rates across both frequency and spatial com-
ponents (microphones). We introduced a joint estimation-
compression optimization problem based on a rate-distortion
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Fig. 8: STOI as a function of the total rate [bps] for Scenario
3: diffuse noise + four interferers.

trade-off to constrain the total rate at the fusion center. We
proposed a solution to the component-wise convex estimation-
compression problem based on alternating optimization. We
found that the optimal estimation weights are actually the
rate-constrained Wiener coefficients and the optimal rates are
solutions to a filter-dependent reverse watering-filling problem.
Based on the MSE criterion and the STOI intelligibility
criterion, the performance of the proposed method is in
most scenarios almost as good as the exhaustive search-based
method, with lower complexity.

APPENDIX A
DERIVATIONS OF THE SOLUTION PROPOSED IN SEC. III

(18)

In this section, we derive the necessary equations to solve
the optimization problem, introduced in (16). Given the La-
grangian objective function in (17), the necessary KKT con-
ditions for optimality are then given by

Lw∗i
= Φxiwi − ΦSiai + Φniwi + Φeiwi = 0, (20a)

Lpij =
−|wij |2 kij 2ln2

22rij
+ λ− vij = 0, (20b)

F∑
i=1

M∑
j=1

rij ≤ Rtot, (20c)

(

F∑
i=1

M∑
j=1

rij −Rtot) λ = 0, (20d)

λ ≥ 0, (20e)
rij ≥ 0, (20f)
rijvij = 0, (20g)
vij ≥ 0. (20h)

We state that the optimal solution to this problem lies on the
boundary of the budget constraint (20c). The proof of this
statement is straightforward. Let us assume that an optimal
solution, say (W?,R?), is found such that R? lies strictly

inside the feasibility set (and not on the boundary), with
the corresponding objective distortion D1. As the rates are
constrained to be non-negative, one can increase the rates by
a constant matrix, say C, with non-negative entries to reach
R2 = R? + C such that the new solution, say (W?,R2)
with a corresponding distortion D2, still lies inside the set.
As the distortion is a monotonically decreasing function over
the rates, this implies D2 < D1. This shows that it is possible
to increase rates until the full budget is used. Therefore, the
third equation in the KKT conditions (20c) will be an equality
constraint, and the fourth equation (complementary slackness
over λ (20d)) and the fifth equation (20e) will be redundant.

We solve the KKT equations and find the optimal La-
grangian multiplier (λ) as a function of optimal weights.
The first equation (20a) is actually the partial derivative with
respect to the complex conjugate vector w∗i [35], i.e.,

Lw∗i
= Φxiwi − ΦSiai + Φniwi + Φeiwi

= (Φxi
+ Φni

+ Φei
) wi − ΦSi

ai

= Φỹi
wi − ΦSi

ai

= Φỹi
wi −ΦỹiSi

= 0,

(21)

where the superscript {·}∗ denotes the complex conjugate
operator on matrices/vectors. The solution to (21) are, in fact,
the multi-channel Wiener filter coefficients, given the optimal
rate vector r?i = [r?i1, . . . , r

?
iM ]T, given by

w?
i (r

?
i ) = Φ−1

ỹi
ΦỹiSi

(r?i ) ∈ CM×1, ..i = 1, . . . , F. (22)

To find the optimal rates, we solve (20b) for vij and substitute
it into (20g) (complementary slackness), i.e.

rij(
−|wij |2 kij 2ln2

22rij
+ λ) = 0, ....i = 1, . . . , F. (23)

Equality in (23) holds either by setting rij or vij = λ −
|wij |2 kij 2ln2

22rij
to be zero. Considering the last three equations

in (20) together with (23), the optimal rate value is zero, i.e.,
rij = 0 when vij > 0, which implies λ

2 ln2 > |wij |2 kij .
Otherwise, the optimal rij will be strictly positive when vij =
0, which implies λ

2 ln2 ≤ |wij |
2 kij , and we have

r?ij(λ
′?, w?ij) =

{
1
2 log2(

|w?
ij |

2 kij
λ′? ) λ′? ≤ |w?ij |2 kij ,

0 λ′? > |w?ij |2 kij ,
(24)

which simply can be rewritten as

r?ij(λ
′?, w?ij)=max(

1

2
log2(

|w?ij |2 kij
λ′?

), 0), .............. (25)

where i = 1, . . . , F, j = 1, . . . ,M with λ′? = λ?

2 ln2 a rate
reverse water filling parameter [23], [29]. In other words, the
solution in (24) can be interpreted as if the equation (20b)
is solved for rij , setting vij = 0, and the result is projected
onto the non-negative orthant, i.e., rij ≥ 0. Finally, to find an
optimal λ′? which satisfies the equality budget constraint (the
equation (20c) with equality), i.e.,

F∑
i=1

M∑
j=1

r?ij(λ
′?, w?ij) = Rtot, ......i = 1, . . . , F. (26)
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we start by introducing a set S that contains the indices of
components which are assumed to be allocated with positive
rates

S = {(i, j)|
|w?ij |2 kij

λ′?
> 0}, ...i = 1, . . . , F, (27)

where i = 1, . . . , F, j = 1, . . . ,M . Given the set S, the budget
constraint can be rewritten as∑

(i,j)∈S

(
1

2
log2(

|w?ij |2 kij
λ′?

)) = Rtot, i = 1, . . . , F. (28)

Taking the logarithm of both sides of (28) and solving for λ′

we have

λ′? =
(
∏

(i,j)∈S |w?ij |2 kij)
1
|S|

2( 2 Rtot
|S| )

, i = 1, . . . , F. (29)

To find the set S, we use the water-filling procedure [23] as
follows.

Algorithm 1: Linear Water-filling for optimal λ′

1 Sort the coefficients |w?ij |2 kij in descending order into
set P .

2 Initialize an empty set S = ∅, λ′opt = −∞:
3 Pick the first element in P .
4 If λ′opt is less than the picked value
5 Add the corresponding index into S;
6 Compute (29) and update λ′opt;
7 Else
8 Stop and return S and λ′opt (Optimal value is found).
9 Repeat 3-8 until all members of P are picked.
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