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Multimicrophone Signal Parameter Estimation in A
Multi-Source Noisy Reverberant Scenario

Changheng Li and Richard C. Hendriks

Abstract—Estimation of acoustic parameters is of great interest
but very challenging in the multichannel microphone signal
processing area. Existing methods either assume simple, but
less realistic scenarios, or suffer from very high computational
costs. In this work, we consider the more general scenario where
multiple sources, late reverberation and noise exist concurrently.
The parameters of interest include the relative transfer functions
(RTFs) of the point sources (both target and interferers) and
individual power spectral densities (PSDs) of the sources and the
late reverberation. We first propose a robust late reverberation
PSD estimator using an iterative compensation scheme. Then,
based on an analysis of the variance of the sample covariance
matrices, we propose a robust and joint estimator for the sources
RTFs and PSDs using multiple time frames that share the same
RTFs. We compare the proposed method with the state-of-the-
art simultaneously confirmatory factor analysis (SCFA) method
and the second order blind identification (SOBI) method. Exper-
iments show that our proposed method reaches the estimation
performance of SCFA, which significantly outperforms SOBI, but
uses much less computational costs compared to SCFA.

Index Terms—Source separation, dereverberation, noise reduc-
tion, microphone array signal processing, RTF estimation, PSD
estimation.

I. INTRODUCTION

Microphone arrays are widely used in various devices, such
as mobile phones, ear/headphones, hearing aids and all sorts of
speech recognition applications. Typically, signals recorded by
the microphones include not only the direct sounds from one or
more point sources, but also reflections and ambient noise. In
particular, the late reflections, known as late reverberation, are,
next to the direct sound of interfering point sources, harmful
to the speech quality and intelligibility [1], [2], even if these
late reflections originate from the target source. Therefore, to
achieve satisfying speech communication performance, micro-
phone signals are processed by multi-microphone or single-
microphone noise reduction and dereverberation algorithms
[3], [4]. Multi-microphone noise reduction algorithms typi-
cally perform significantly better than their single-microphone
counterparts [5] and typically depend on the relative transfer
functions (RTFs) of the sources, the power spectral densities
(PSDs) of the sources, the late reverberation and the ambient
noise. However, in practice these parameters are unknown and
their estimation is thus an essential problem for microphone
array signal processing.

Many methods have been proposed in recent years to
estimate these acoustic parameters [6]-[19]. However, when
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considering multiple sources and the coexistence of late rever-
beration and ambient noise, the estimation of the aforemen-
tioned parameters can be very challenging. Therefore, many of
these works consider simplified signal models [7]-[12], [14],
[15], [17]-[19], where either simplifying assumptions are used,
or a subset of the parameters is assumed known. For instance,
in [9], it is assumed that there is only a single active source
in each time-frequency bin. In [8]-[10], [17], [18], either the
late reverberation or the noise component is not considered
in the model. Note that these methods based on simplified
signal models have been widely used in practice, due to their
simplicity and the properties of speech signals such as sparsity.

Some works considered a more general signal model, but
have some other strict assumptions. For example, in [15], only
the direct sound is considered as the target signal. The RTFs
are assumed to only depend on the direction of arrival (DOA)
of the source position and the microphone array geometry. By
further assuming the DOA is known, the RTFs are considered
known. However, the early reflections, which are beneficial
to speech intelligibility [20], are sometimes included in the
target sound. The number of unknown real parameters in each
RTF vector is 2(M — 1) with M the number of microphones.
Some methods use prior knowledge (like hearing aids that
assume a target in front). When considering both the direct
sound and the early reflections as the target signal without
prior knowledge of the scene, it is very challenging to estimate
the RTFs. In [21], [22], the sound sources are assumed to be
active successively and in [23], the interferers are assumed to
be active earlier than the target sound source, which means
that these methods cannot be used if two or more sources
become active simultaneously.

The joint estimation of all the parameters considering mul-
tiple sources, late reverberation and ambient noise is achieved
in [13] using the simultaneous confirmatory factor analysis
(SCFA) method. Although this method is very effective, it
comes with a very high computational cost. The goal of this
paper is therefore to develop a method that can estimate the
signal parameters (RTFs and PSDs of multiple sources, as
well as the late reverberation PSD) at high accuracy and low
complexity.

An important aspect of this problem formulation is the
estimation of the late reverberation PSD. In [24], a com-
parison between many state-of-the-art late reverberation PSD
estimators was published. All methods in this comparison
considered only a single source and the RTF was assumed
to be known for the spatial coherence-based methods. In
this work, as part of the joint estimation of all unknown
parameters, we propose a late reverberation PSD estimator that
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does not require knowledge on the RTFs. This can be seen as
an extension of the method in [10] from a single-source to the
multi-source scenarios.

In [25], a low complex blind source separation method was
proposed based on a joint diagonalization of a set of covariance
matrices. In [26], we modified this method to estimate the
RTFs of multiple sources in a nearly non-reverberant and
noiseless environment. In the current work, we extend the
methods from [25], [26] to jointly estimate not only the RTFs
in a noise-free and non-reverberant environment as in [26], but
to estimate both the RTFs and the PSDs of the sources in a
reverberant and noisy environment. Note that eventually, the
noise component in this work refers to microphone self-noise.
Although not strictly necessary for the proposed method, this
is often modelled as spatially white Gaussian noise. Given
a set of covariance matrices corresponding to a sequence of
time-windows, [25] exploits the covariance matrix of the first
time window and [26] exploits an average of a subset of these
covariance matrices to jointly diagonalize the complete set
and then estimate the RTFs. We show in this paper that any
proper linear combination (e.g., a random combination or their
average) of these matrices can be used and propose the optimal
linear combination that minimizes the variances of the error
matrix of the sample covariance matrix.

This paper is structured in the following way. Section II
presents the signal model, statistical assumptions and problem
formulation of this work. In Section III, we will first propose
our late reverberation PSD estimator. Then in Section III-B, we
modify the second order blind identification (SOBI) method
from [25] to our estimation problem. After that, we will
analyze the variance of the sample covariance matrices and
propose our minimum variance joint diagonalization (MVJD)
method to estimate the RTFs and the PSDs of the sources.
In Section IV, experiments in different scenarios will be
presented to compare our proposed method to some state-of-
the-art reference methods. Finally, Section V concludes the

paper.

II. SIGNAL MODEL

We consider the presence of R acoustic point sources
recorded by a microphone array of M microphones in a
reverberant and noisy environment. The number of sources
R is assumed known in this work. (In practice, it can be
estimated using some existing methods such as [27], [28].) The
microphones can be placed compactly with various geometric
structures (e.g., linear, circular or spherical). Each microphone
records the signals generated from sound sources via both a
direct propagation path and (infinite) reflections of surrounding
objects (e.g. walls). These signals can be modeled as the
convolution between the sound sources and the room impulse
response (RIR). In the short-time Fourier transform (STFT)
domain, the signal received at the m-th microphone can then
be modeled as

R

R
m (LR) = (L) + Y oy (1, F) +vm (1LF) (1)
r=1

r=1

T (1K) dm (1K)

where [ is the time index of the STFT window, which we will
refer to as a sub-time frame, and k is the frequency-bin index.
In addition to sub-time frames indexed by [, we will later also
define time frames and time segments. The source reflections
are typically labeled as direct component, early reflections
(typically the first 50 ms), and late reflections. When con-
sidering the target source, these early reflections are actually
beneficial for the speech intelligibility [20]. For a source r,
we will therefore consider the direct component and early
reflections combined, denoted by ;. (I, k), and differentiate
these from the late reflections, denoted by d,, (I, k). The
additive noise component is denoted by v, (I, k). In addition
to potential interfering sources, both the late reverberation
and additive noise are detrimental to speech intelligibility and
quality.

As multiplication in the STFT domain can approximate the
convolution in the time domain [29], we can model the r-th
source at the m-th microphone as

Tmr (Z; k) = Qmyr (la k) Sp (lv k) s (2)

where s, (I, k) contains the direct sound and early reflections
at the reference microphone and a,,, (I,k) is the relative
transfer function (RTF) [29] of the r-th source between the
m-th microphone and the reference microphone. Without any
limitation, we use the first microphone as our reference (i.e.,
a1, = 1). For the duration that the sources are static relative
to the microphone array, we can assume that the RTFs are
constant. We refer to this duration as a time segment (TS)
indexed by (. In vector form, the multi-microphone signal
model is then given by

R
y (k) = Zar (B, k) s (I, k) +d (I, k) + v (I, k) € CM*1 |

r=1

x(1,k)

3)
where each column vector is stacked with M elements such
as'y (l7 k) = [yl (la k) s YM (la k)]T

Although speech-related signals s, (I,k) and d (I, k) are
realizations of non-stationary processes, they can be assumed
stationary for a short duration of a time frame (TF). The
duration of a TF is much longer than that of the STFT window,
which we already denoted as a sub-time frame (SF). Hence,
we assume the t-th TF contains T consecutive SFs indexed
by ! from ! =1+ (t—1)T to | = ¢T. In addition, we assume
in this work that all sources are static for N consecutive TFs
(e.g. N = 8 for approximately 2.5 s in our experiments),
which means that the S-th TS contains N TFs indexed by ¢
fromt =1+ (8 —1)N to t = SN. The relation between TS,
TF and SF is visualized in Fig. 1. In the situation that sources
are not static for the duration of a TS, we can use an adaptive
time-segmentation e.g. as proposed in [30].

Within the ¢-th TF, the STFT coefficients vector y (I, k),
with sub-frame index | =1+ (¢t —1)T,--- ,tT, is assumed to
follow a circularly-symmetric complex Gaussian distribution
with zero mean and cross power spectral density (CPSD)
matrix Py (¢, k) € CM*M _Since x (I, k), d (I, k) and v (I, k)
are commonly assumed to be mutually uncorrelated (even
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Figure 1: Visualisation of the definition of time segment (TS),
time frames (TF) and sub frames (SF).

though strictly speaking x and d are weakly correlated), we
can decompose Py, (¢, k) into

Py (ta k) =E [y (lv k) yH (lv k)]

4
:Px(t7k)+Pl(t7k)+Pv(t,k‘) G(CMXM ] ( )

For the source component x (I, k), containing the direct and
early reflections for all sources, the CPSD matrix Py (¢, k) is
given by

R
Py (tk) =Y ¢ (t.k)a. (3, k)al (3,k)

r=1

= A (B, k)P (t,k) AT (B,k)

with A(ﬂvk) = [al (ka)a"'vaR(ﬁvk)]’ P(t7k) =
diag [¢1 (t,F) -+ én (t,1)] and 6, (t.k)=Els, (LK) ]
the power spectral density (PSD) of the r-th source at the
reference microphone with |-| denoting the absolute value.
Note that in Eq. (5), we used the assumption that all sources
are mutually uncorrelated and made explicit that the RTFs
a, (B, k) are constant over a time segment (.

For the late reverberation component, P (¢, k) is commonly
assumed to be the product of a time-invariant full rank spatial
coherence matrix I' (k) and a time-varying PSD ¢, (¢, k) [7],
[31], that is,

(&)

Pi(t,k) =o¢, (t, k)T (k) . (6)

Here, I' (k) is assumed to be measured or calculated a priori
since it is time-invariant and independent of the microphone
array position [32]-[34]. For instance, if a spherically isotropic
noise field is assumed [35] and inter-microphone distances are
assumed known, I' (k) can be calculated to be

27 fok d;
T, . (k) =si LA
4 (k) s1nc< 7 c)

sinx

with sinc (z) = *2%, d; ; the inter-distance between micro-
phones ¢ and j, f; the sampling frequency, c¢ the speed of

)

sound and K the total frequency bin number. Also note that
when a room has ceilings and floors that are more absorbing
than the walls, the cylindrical isotropic noise field is a more
realistic model. Note that with Egs. (6) and (7), P could also
model other isotropic noise sources, i.e., noise sources that are
not due to the late reverberation.

The noise component v is usually a summation of the
microphone self-noise and other non-point noise sources that
are approximately spatially uncorrelated. For this kind of
noise, we assume that it has a time-invariant covariance matrix
P, (k) for each frequency. Therefore, we can also measure
P (k) a priori by assuming a noise-only segment is available.
In this work, we consider only the microphone self-noise to
be present with each microphone having the same spatially
white Gaussian noise distribution, which means Py, (k) = ¢, 1.
However, notice that we can always introduce a whitening step
to guarantee Py, (k) is spatially white.

With these assumptions, we can now write the covariance
matrix of y (I) as

Py (t)=AB)PH)AT (B)+ ¢, () T+ 0,1, (8)

Note that we omitted the frequency indices for legibility in
Eq. (8) and will do so for all the following equations since
the estimators proposed in this work are independent across
frequency. Based on the previously discussed stationarity of
the signal, we can estimate Py, (¢) using the sample covariance
matrix

R 1 tT
Py(t) =7 > yyd™. 9)
I=1+(t—1)T

Note that, to compute an STFT with a meaningful frequency
resolution at 16kHz, the subframe duration or STFT window
length cannot be too small. Meanwhile, to estimate the second-
order statistics in practice, each time frame is composed of
many subframes. Therefore, the time frame here is longer than
the commonly assumed duration for stationarity. This will lead
to an average of the PSDs but will maintain the RTF matrix
or the spatial coherence matrix of the signal components
[33]. Within the §-th TS, the a priori known or estimated
parameters from the signal model given in Eg.N (8) now
include N sample covariance matrices {133, (t)}

. . . Jt=1+(B-1)N
(i.e., for the N time frames in segment /3), the estimated spatial

coherence matrix of the late reverberation I' and the estimated
noise PSD gZ)v. Note that as analyzing the errors of estimated I
is outside of the scope of this work, we assume that I'=Cin
the next section. The main goal of this paper is to develop an
algorithm that can estimate the RTF matrix A (), the diagonal
PSD matrices of the sources {P (t)}fivH(Bfl)N and the PSDs

of the late reverberation {¢. ()}

5 t=1+(B—1)N for each segment

III. PARAMETER ESTIMATION

In this section, we propose our joint estimator based on a
joint diagonalization scheme. We first introduce the estimator
of the late reverberation PSDs in Section III-A. Then, we use
the estimated late reverberation PSDs and the other a priori
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given parameters to estimate the RTF matrix and the source
PSDs in Section III-B.

A. Estimator of the Late Reverberation PSDs

We assume here that the late reverberation PSDs ¢, (t)
across time frames are unrelated and will estimate these per
time frame ¢ using 15y (t) for the ¢-th time frame only. Hence,
for legibility, we will omit the time frame index in this
subsection. Subtracting the true noise covariance matrix Py,
from Py, we get

P,=P, - P, =APA" + 4T (10)
Taking the square-root decomposition such as the Cholesky
decomposition of the full rank matrix I', we have I" = LLY,
Using L, we can whiten matrix P, by calculating

P, =L 'P,L ¥ = (L7'A)P (L'A)" +¢,1. (D)
Since the rank of (L*IA) P (L’lA)H is R, we can see
that, after whitening, the M — R smallest eigenvalues of P
should be equal to ¢.,. To see this, we can take the elgenvalue
decomposition (EVD) of (L7'A)P (L 1A) = UAUX
with U unitary and A diagonal. The M — R smallest diagonal
elements of A are all zero. Taking the EVD of P, using U
we get

UPP,U=A+¢,1 (12)

which shows that the M — R smallest eigenvalues of f’w equal
¢~. Because Py is estimated from limited data, the M — R
smallest eigenvalues will have some distribution around ¢.,.
Therefore, we take their mean value as our estimate of ¢.,.
That is,

R M Ao
=D WR (13)
i=R+1

Note that, we assume all the eigenvalues in this work are
ordered in descending order, i.e., A1 is the largest eigenvalue.
The error of the estimator in Eq. (13) is analyzed for the
special case with R = 1 in [10]. Eq. (13) is indeed a
biased estimate of ¢, (underestimation) due to using the
subset of the ordered eigenvalues. Although Eq. (13) is not
the optimal estimate of the late reverberation PSD, we choose
this estimator since it does not need any RTF information.

Note that Eq. (13) can be seen as an extension of the method
proposed in [10] where a single source scenario (i.e., R = 1)
was assumed. However, we work with estimates of P,,,I" and
P,,. Therefore, similar to other spatial coherence-based meth-
ods as evaluated in [24], this method can have overestimation
errors or underestimation errors when the late reverberation
PSD is relatively small compared to the noise PSD (e.g. under
low reverberant signal-to-noise ratios (RSNRs) in [24]). Even
when the true covariance matrix Py is used, we can only
obtain an estimated noise PSD, implying a residual noise PSD
error will remain. Hence, we have

y = 0d=APAT 4 6. T+ (6, — 6, )1
NS

residual noise

P, =P (14)

4
The whitened matrix is then given by
P, =L (P - q@vl) L
— (LA P (L7A) 46,1+ (6, - 6,) T
(15)
If (% - qgv) > ¢, the M — R smallest eigenvalues of 1%’7

can be much larger than ¢, resulting in large overestimation
errors of ¢. If — (¢, — QASU) > ¢, the eigenvalues of P,y
can be negative. A common way to deal with negative PSD
estimates is to replace the negative estimates with € as done in
[12]. However, this will result in very large underestimation
errors. To avoid large overestimation errors and underestima-
tion errors, we propose the following estimation procedure for
¢y and ¢,.

First of all, notice that Py = Py — ¢,I — ¢, I = APAH
is positive semi-definite with rank R. In practice, we have the
estimated matrix

Py=Py — ¢, I-0¢,I
which can have negative eigenvalues even when we know the
actual values of the PSDs ¢, and ¢,, since we only have
an estimated P Therefore, instead of adjusting ¢U and qu,
to make Py positive semi-definite with a rank R, we only
constrain the estimated matrix 15x to have no less than R
positive eigenvalues to overcome adjustments that will lead to
overestimation of ¢.,. We now consider three cases in which
this constraint is violated due to large overestimation errors of
¢y and ¢,,.

1) If the given initial estimate év (estimated from speech
absence frames) is larger than Ayg, with Ayg the R-th
largest eigenvalue of Py, for any non-negative qﬁv, we
have

(16)

P, =P, — ¢, ¢,T
<Py, — A\yrl - $,T
= Py - >\yRI ’

a7

where the matrix inequality A < B means that B — A
is positive semi-definite. Since Py — AyrI has at most
R — 1 positive eigenvalues, P, has less than R positive
eigenvalues. Therefore, to make sure f’x has no less
than R positive eigenvalues, we need ng < Ayg. In this
work, we update g?)v by

L itk My
v vy ) 18
¢ <—mm{¢ M—R+1 (18)
n PO 2 iR Ayi

such that ¢, < =% ) < MAygr, where, for the

second inequality, the equality holds only when A\ r =
AyRt1 = = Aym.

2) Next, ¢, can still be largely overestimated such that
the eigenvalues of f’ﬂ, in Eq. (15) are too small to get
a positive qASV using Eq. (13). Therefore, we iteratively
update (ﬁv by qASU — cvév with 0 < ¢, < 1 a constant
value such as ¢, = 0.9 and estimate (ﬁv using Eq. (13)
again until a positive QZ),Y is obtained. Note that this
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procedure has at most [logcv (’\(EM ﬂ -+ 1 iterations
since after these iterations, we have

; C[logcv(*gf)]ﬂ B évciogcv(ki’fj) = . (19)

VU

and P will be positive definite. This results in positive
eigenvalues of P.,, and hence, a positive ¢7
3) Finally, ¢7 can be overestimated such that Py has less

than R positive eigenvalues. Therefore, we iteratively
update qﬁv by gb,y — Cvﬁbv with 0 < ¢y < 1 a
constant value such as ¢, = 0.1 until P, has R positive
eigenvalues. Since we have updated gZA)U by Eq. (18), we
have d)v < Ayr. Hence, in the worst case that we need
many iterations, (;57 approaches zero and Py~ P ¢v
can have R positive eigenvalues.

The late reverberation PSD estimator is summarized in Algo-

rithm 1.

Algorithm 1: ¢, estimator

Input: Estimated Py, I‘,init.év, Iter N

Output: qu,f’x
1 for all k,1 do
2 Calculate the EVD of Py, and update ¢A>v using
Eq. (18).
3 Use ng and I to do subtraction and whitening
using Eq. (14) and Eq. (15).

4 | Calculate the EVD of P.,.

5 Calculate QAS,Y using Eq. (13).

6 while q% <0do

7 Update (;Abq, by qAbq, — cvév

8 Calculate the EVD of f’w

9 Calculate (ﬁv using Eq. (13).

10 Calculate Py using Eq. (16).
1 Calculate the R-th largest eigenvalue of Py, A;r.
while \,r < 0 do

12 Update QASW — 67(237. Calculate Py using
Eq. (16). R

13 Calculate the R-th largest eigenvalue of Py,
AzR-

B. Estimator of the RTF matrix and the source PSDs

Without loss of generality, we consider the estimator of the
RTF matrix and the source PSDs for the first time segment
(i.e., B = 1) and neglect the index [ for notational conve-
nience. Since all time frames in a time segment are assumed
to share the same RTFs, we can estimate the RTF matrix with
improved accuracy using all time frames jointly, similar to the
recently proposed methods in [13], [26]. Having estimated qASPY
and (ﬁv, we can subtract both the late reverberation and noise
components from Py, (¢) for t =1,--- , N, and we get

P (1) =Py (1) -

oI — b, ()T = AP (t) AH | (20)

1) parameter identifiability: Before estimating the RTF
matrix and the source PSDs, we need to analyze the parameter
identifiability to avoid biased estimates. In general, the param-
eters are said to be identifiable meaning that if two matrices
have the form as in Eq. (20) (i.e., Px; (t) = A1P1 (2) AT
and Pyo () = AuPy(t) Ay for t = , N, then
Pyx1 = Pyo is equivalent to A; = Ay and P; = Ps.
Note that for a given matrix Py = APAH | we can find
different solutions by simply permuting the columns of A
and corresponding diagonal elements of P. However, since
this permutation ambiguity can be further solved by methods
such as post-processing [36], we consider the parameters to
be equal to their permuted versions in this work. Note that the
first row of A are all ones and P is diagonal.

We now show that for multiple sources (i.e., R > 1) and a
time-segment consisting of one time-frame (i.e., N = 1), the
parameters are not identifiable. That means, for any matrix A
with its first row all ones and P; (1) diagonal, we can find
A.2 7é A1 and PQ 75 P1 while A1P1A1H = A2P2A2H,
where the first row of Ao are all ones and Ps is diagonal.

For any unitary matrix Q € C* %, we can construct

1 1
Az = AP} Q(diag (e[’ AP} Q))

2n
and
P, — <diag (e{IAlP%Q)) (diag (e{’AlP%Q»H

with e; = [1,0,---,0]" € CM*1 (where the subcript in
e; indicates that the first microphone is the reference). The

(22)

1
diagonal matrix P = diag (e{l A,P? Q) is used to make the
first row of A, all ones and P, diagonal. We then have

P = APy ALY

— (a:P{QP) (PP7) (AIPfQP—l)H
= AP A7
=Pxi1,

but As # A; and P, # P; for the non-diagonal unitary Q
and R > 1 (Q is a scalar when R = 1). Hence, if no other
prior information is used, the parameters for a single time
frame are not identifiable, and we need multiple time frames,
i.e., N > 2, for each time segment to estimate the RTF matrix
and the PSDs uniquely. Note that N > 2 is only a necessary
condition for the identifiability of the parameters. For a suffi-
cient condition, We need further assumptions on the PSDs of
the sources, which we will introduce in Section I1I-B2.

2) SOBI: Although the SOBI method was proposed in [25]
to estimate the mixing matrix and separate the source signals
directly, we slightly modify this method and use it to estimate
the RTF matrix and the PSDs. We therefore first introduce a
modified SOBI as the reference method for RTF estimation
in this subsection. Subsequently, in the next subsection, we
propose a significantly improved method based on SOBI,
referred to as the minimum variance joint diagonalization
method (MVID).

Given is a set of covariance matrices {Px (t)}i\i 1> with
N > 2. To find A and P (t), such that P, (t) = AP (t) A,

(23)
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fort=1,---, N, we can make use of a joint diagonalization
of the set {Py (t)}iv: 1. That means, instead of estimating
A and P (t) directly, we first estimate A = AP (1)% and
P(t)=P (1)7% P(t)P (1)7% via solving a joint diagonal-
ization problem, as we will show later. Let us for now assume
we know A and P (t). In that case, we can estimate the RTF
matrix and P (¢) by

A = Adiag (efA) B , (24)
P (1) = diag (e{f A) diag (e{f A)H , (25)
and . .
Pt)=P(1)?P#)P(1)? , (26)
where e; = [1,0, - - ,O]T.

Now, we show how to estimate A and P (). Consider
estimating the SVD components of A = Us=VH, We can
reformulate P, (t) = AP (t) A¥ by

P.(t)=AP (1)} P(1) *P(H)P(1) 2 P(1)7 A¥

t) A"
»: VAP () VUl .

=~

=A
=U

27)

For t = 1, we have Py (1) = UXU" as then P (1) = I and
VHV = 1. Therefore, both U and ¥ are known from the
above EVD of Py (1). Then we can use U and X to calculate

P, (t) =X 2 U"P, (1) US"2

N 28
=VIP@) V. 28)

Since V is unitary and P (t) is diagonal with its r-th diagonal

element jj;f?), Eq. (28) is indeed the EVD of Py, (t) with

R
{ig} the eigenvalues and V the joint eigenvector

matrix for all ¢ in the segment. To make sure we get a unique
estimate of V, we need to assume that for any r;-th and r,-th
eigenvectors (i.e. the r;-th and r5-th columns of V), there exist
one time frame ¢y such that the r;-th and ro-th eigenvalues
are distinct [25], i.e.,

¢T1 (to) ng’z (t())
¢T1 (1) ¢T2 (1) .

The joint eigenvector matrix V diagonalizes {Py, (t)}i\]: 1
simultaneously, i.e.,

VP, (t)VE =P (t),Vt e {1,--- ,N} .

7 (29)

(30)

However, such a joint diagonalization might not be achieved in
practice since we only have the estimated P, (¢). Therefore,
an approximate joint diagonalization was pursued in [25] by
minimizing the off-diagonal elements of VP, (t) V¥, which
is

m‘;nzfz , Off (VP (t) V)

€2y
st. VIV =1,

where off (C) = 37, s |C;.;]? for a matrix C € CM*M,
Then, the algorithm proposed in [37] is used to solve Eq. (31),
which is numerically very efficient. With V estimated, we use
diag (VPy, (£) V) as the estimate of P (1).

The SOBI method is summarized in Algorithm 2.

Algorithm 2: SOBI

Input: Estimated Py () ,fort =1,--- | N,
Output: A and P (¢) fort=1,--- , N,
1 Estimate U and ¥ from EVD of P, (1).
2 Construct new matrices Py, (¢) for t =2,--- | N using
Eq. (28). i
3 Estimate V and P (¢) for t = 2,--- , N using the
Jacobi-like algorithm [37].
4 Estimate A with U,X¥Y and V.
5 Estimate A and P (¢) using Egs. (24) to (26).

Note that, with this SOBI-based algoritlhm, the matrices U,
Y and V in the SVD of A = AP (1) are first estimated
before estimating the RTF matrix and the PSDs. The estima-
tion accuracy of U and X depends fully on the estimation
accuracy of the first covariance matrix Py (1) = UXU”,
which can be hugely erroneous. For instance, when the late
reverberation and noise have large energy during the first time
frame. Instead of using Py (1) to do the EVD at the first
step, we can use any Broper linear combination of all the
covariance matrices » , ; ¢;Px (t) with ¢, > 0, such as the
average of a subset of the covariance matrices as we proposed
in [26]. The estimation accuracy of the RTF matrix and the
PSDs can be improved by using values for c¢; that minimize
the error between Zivz 1 ¢tPx (t) and its estimated counterpart
Soiss P (1)

3) MVJD: In this subsection, we first show our general-
ization of the SOBI method. Then we propose our minimum
variance joint diagonalization method (MVJD) based on the
analysis of the variance of the sample covariance matrices.

Instead of using the first covariance matrix Py (1) to do the
EVD at the first step of SOBI, we can use any proper linear
combination of all the covariance matrices Zf;l Py () =
UXUH with ¢; > 0. Therefore, U and ¥ can be obtained
from Zi\il ¢;Py (t) for

1
N 2
A=A (Z P (t)) —Ux:VH | (32)
t=1
Then, using Egs. (28) and (31), we can get V and P (t) =
_1 Zu
(Zi\; P (t)) P (t) (Zivzl P (t)) * . To get a unique
estimate of V, we assume that for any 7;-th and r5-th columns
of V, there exists one time frame ¢y such that

$ry (to) br, (to)
Sty e (1) XL et (1)
With U, ¥ and V estimated, we can estimate A
using Eq. (32), which furthe_r1 gives us the RTF ma-
rix A = Adiag (efA) and Zi\il aP(t) =

2

v (33)
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diag (e{ﬂ&) diag (e{ﬁ&) " . Finally, from Zi\/:l P (t) and

P (t), we can calculate the PSDs matrix for all time frames
= N

by P(t) =P () SN, P (1).

Since the estimation errors for the estimated covariance
matrices Py (¢) are different for different ¢, using different
coefficients ¢; in step 1 will result in a different U and 3, and
thus in different estimates of the RTF matrix and the PSDs.

We will now explain how we can optimally select the
coefficients ¢; such that the summation of the variances of the
error matrix in the estimated P (¢) is minimized. Suppose we
have the true PSDs of the late reverberation and noise. The
estimated covariance matrix for Py (¢) is then given by

Py (t) =Py () — ¢ — ¢, ()T
tT H
= Z %_%I_mt)
+(t—
N (x () n(1)(x0)" +n0)")
_ZI: =
~¢I—¢, ()T 34)
- xO)x0”
_zl: T
Z ) n(l)x(zf’
H
Z _d)’y()F_QSvI,
l

where n(l) = d(1)+v(l). Since we assumed that x, 1 and v are
uncorrelated, we omit the cross correlation terms in Eq. (34)
and get

l Hn(l G
+Z% — 6, (T — 6,1
l

Applying this to the weighted sum of the estimated covariance
matrices used at the first step of our proposed method, we get

- t(T )TX(Z)X(I)H
1+(t—1
ZCtP Z T
y l_lé_m“(”“(”H
> a 7 —th (6y (T +6,1)

t=1

(36)

where the first term is a weighted sum of the sample covari-
ance matrices for the target sources and the remaining terms
are unwanted errors that we will denote by matrix W. Since
n(l), for il =1+ (t—1)T,---,tT, is assumed to follow a
circularly-symmetric complex Gaussian distribution with zero
mean and covariance matrix Py (t) = ¢, (1) T + ¢,1, the

tT

2

n(l)n(l)"”
I=1+(t-1)T

Wishart distribution ~ WY, (T, Py (t)) with T degrees of
freedom [38]. The expectation of W, is TPy, (t) [39]. Hence
the expectation of W is

random matrix W; = has a complex

N E{W N
E{W}=> ¢ {T o — > Py ()
t=1 t=1
TP, al (37
:th T(t) — ZCtPn (t
t=1 t=1
=0 .

The variance of the {i, j }-th element of W is var {W, ; ;} =
P, iP5 [39]. Hence the summation of the variances of all
the elements of W, is

M M Noow
Z var {W; ;} = Z Var{th t,m}
i,j=1 ij=1 t=1 T

M N oo
Z thvar{Wt i}

i,j=1t=1
M N oo
2
= Z “tp ..P, (38)
2 n,i,td n,j,9
i,j=1t=1 T
N
>4

> 75 e (Pa ()

1

Z ctr (P
t=1

where the equality holds when ¢y tr (P, (1)) = cotr (Py (2)) =
- = cntr (Pn (N)). Since tr (Py (t)) = M (¢ (t) + ¢y),
we can choose ¢; = to minimize the variances of
the error matrix.
The MCJD method is summarized in Algorithm 3.

272

1
b~ (D) +dv

Algorithm 3: MVJD

Input: Estimated Py (t) ¢ (t) and ¢, for
t=1,---,N,
Output: A and P (¢) fort =1,---
1 Estimate U and X from EVD of
Yisi B Px (-
2 Construct new matrices Py,
Eq. (28).
3 Estimate V and P (¢) fort =1, - - -
Jacobi-lilge algorithm [37].
4 Estimate A with U, ¥ and V using Eq. (32).
s Estimate A and P (¢) using A and P (¢).

, N

)

(t) fort =1,---, N using

, N using the

IV. EXPERIMENTS

In this section, we evaluate the estimation performance of
our proposed method in various simulated acoustic scenarios
using multiple microphones. We compare our method to both
the SOBI based method introduced in Section III-B2 and the
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SCFA method [13] that we will introduce in Section IV-A.
In Section I'V-B, we evaluate the different methods using per-
formance measures for the estimation accuracy, the predicted
speech quality and the predicted speech intelligibility. Finally,
the performances including the computational complexity of
all methods are presented and discussed in Sections IV-C
and IV-D.

A. Reference methods

In addition to the SOBI method introduced in Sec-
tion III-B2, we include another state-of-the-art method for
comparison, which is the simultaneous confirmatory factor
analysis (SCFA) method [13]. The SCFA method is based on
the maximum likelihood cost function:

mlnz log |Py, (

Specifically, the following non-convex optimization problem
is formalized in [13]

£)] + tr (P (t) P! (t)). (39)

N A~
argmin Y log|Py (¢)| + tr (Py Ol (t))
P(1),A

¢W(t)a¢v
st. Py (1) = AP () AT 46, ()T + 6,1 (40)
P()—dlag[¢ ), or ()],
alr*]-gbr() 0(,75 ()207%207
fort=1,--- ,N;r=1,--- |R.

Note that the signal model assumed here is the same as
our proposed model in Eq. (8). According to [13], a local
minimum for Eq. (40) can be found by iteratively reducing the
cost function value. At each iteration, a non-linear constrained
optimization problem needs to be solved to update the param-
eters. The number of required iterations is very large (e.g. in
the order of 500) due to the non-convexity of the problem and
the high dimension of the parameters. Therefore, the SCFA
method has a relatively high computational cost.

B. Evaluation measures

1) Estimation accuracy: Since the main goal of this work is
to find accurate estimates of the parameters of interest, we first
introduce the estimation accuracy measures for the different
parameters.

For the RTF matrix, to evaluate the alignment of the
estimated RTF with the ground-truth RTF, we calculate the
Hermitian angle by means of

Y Z acos

=1 k=

B K/24+1 R < |ar(8,k)" a.(8,k)| >

Har(ﬁvk)‘lz ‘lér(ﬂvk)l‘g
BR(K/2+1) ’

1 r=
E, =

(41)

where the error has been averaged over different sources,
frequency bins and the number of time segments B. Note that
the ground-truth RTF is calculated using the first 32ms of the
corresponding RIR. For the PSD of the r-th source ¢, and

the PSD of the late reverberation ¢., we use the symmetric
log-error distortion measure [40]

1 (¢z(t k) ) ‘
B t, keg) &\ Gith) “2)
1 |Q| k)
for ¢ = r or v, where the index set Q is used to discard zero
PSDs, as used in [41] and |Q] is the cardinality of Q. For the
errors of the source PSDs, we use E; to denote the average
S B
value of them, i.e., E; = “=—. Note that the error in Eq. (42)
can be seen as the summation of the overestimation error and
the underestimation error, which are
i (t,k) ) } ‘
éi(t,k)

10 > ’mln{O log (

t kEQ
EY = , (43)
1%
and
10 > max{O log( EZ g)}
B — t,keQ (44)

Q| ’

respectively. The ground-truth PSDs of the r-th source and the
late reverberation are calculated using

1 tT
= Z

I=1+(t—1)T

o (1) s (D). (45)

and
tT

6u(t) = i Y

I=14(t—1)T

d? (1) d(1). (46)

In a noise reduction method, under or overestimates of target
source PSDs or noise/interference PSDs have each its own
effect. When the target source PSDs have large underesti-
mation errors or the noise or interference PSD has large
overestimation errors, the target source obtained by a noise
reduction algorithm using these estimates typically has large
distortions. On the other hand, if the estimate of the noise
or interference PSD has a large underestimation error, the
reconstructed signal often comes with musical noise [42].
Therefore, we will also present in detail the underestimation
errors and overestimation errors in the experiments.

2) Predicted Quality and intelligibility: Since the estimated
parameters are commonly used in noise reduction algorithms,
we use the estimates in the well-known multi-channel Wiener
filter (MWF) [43] and use the MWF outputs to reconstruct
each point source signal. For estimating the r-th signal, the
MWF can be expressed as a combination of a minimum
variance distortionless response (MVDR) beamformer [44]
and a single-channel Wiener filter, which is

o r

W, = = T = ~ W, MVDR »  (47)
O + WT’MVDRRr,nnW'r,MVDR
where W, vvpr 1S the MVDR beamformer
P
N Rr,nnaT
W, MVDR = —— a1 » (48)

N 1
371:1 Rr,nnar
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and

(49)

Note that the permutation ambiguity exists after estimating the
RTF matrix and the sources PSDs (i.e., we cannot determine
which column of A belongs to which source for different
frequency bins). This problem is beyond the scope of this work
and methods on this topic, to name a few, were investigated
in [36], [45], [46]. In the experiments of this work, we use
the oracle RTF matrix as guidance to permute the columns of
the estimated RTF matrix per time-frequency tile.

The predicted speech quality of each reconstructed signal
is evaluated by calculating the segmental-signal-to-noise-ratio
(SSNR) [47] and the perceptual evaluation of speech quality
(PESQ) measure [48]. The predicted speech intelligibility
performance is evaluated by the speech intelligibility in bits
(SIIB) measure [49], [50]. Alternately, we select one of the
R sources as the target and the remaining R — 1 sources
as interferers. We than average all measures we used in the
experiments over these R different setups.

C. Experiments with simulated RIRs

5 ®
41 °
—~3r
£ +
P *
1r 250 + 4+
248l + 4
° 349 351
0 L L L

0 1 2 3 4 5 6 7

z(m)
Figure 2: Top view of the acoustic scene with a zoom-in of
microphones.

The acoustic scene of the first experiment is shown in
Fig. 2, where four microphones and three sources are placed
in the room with a dimension of 7 x 5 x 4m. The speech
signals are downloaded from the TIMIT database [51]. To
simulate the reverberant signal recorded by each microphone,
we convolve the speech signals (with a duration of 33 s) with
the room impulse responses (RIRs) generated by the image
source method [52]. The microphones are omnidirectional and
the RIRs have a duration of 1 s. Then, to synthesize the noisy
microphone signals, we add independently generated white
Gaussian noise to each reverberant signal. The variance of
the noise is fixed at a value calculated from given signal-to-
noise ratios (SNRs). The SNR value is the ratio between the
overall energy of the direct and early reflections of the first
speech signal at position (3.49,2.5) and the energy of the
noise component at the first microphone.

The microphone signals are sampled at a frequency of
fs = 16 kHz after which they are transformed to the frequency
domain by the STFT procedure, in which the 50 % overlapping
square-root Hann window with a length of 32 ms and the FFT

length of 512 are used. Note that the window length is the
same as the sub-time frame length and also equals the early
part of the RIRs. Each time frame has T' = 20 overlapping
sub-time frames and thus a duration of 0.32 s. Note that this
duration can be longer than the actual speech source stationary
period and the PSDs can be seen as the averages of the PSDs
over each time frame.
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(e) SIIB performance. (f) PESQ performance.

Figure 3: Performance vs the late reverberation time. In Figs.
b and c, the top gray bars indicate the underestimation errors,
and the bottom colored bars indicate overestimation errors.

1) Performance comparison: In Fig. 3, we present the
performance comparison among our proposed method and the
two reference methods, where we adjust the reverberation time
from 0.2 s to 1 s. The number of time frames per segment
is 8 and the SNR is fixed at 30 dB. We first show the RTF
estimation error calculated by Eq. (41) in Fig. 3a. The error for
each method increases as the room becomes more reverberant.
Our proposed MVID method has similar performance com-
pared to SCFA, which both outperform the SOBI method. In
Figs. 3b and 3c, we show the PSDs estimation error calculated
by Eq. (42). For each bar (each overall error), we also show
the overestimation error using the bottom colored bar and
the underestimation error using the top gray bar. In Fig. 3b,
we show the source PSD estimation errors, where the errors
also become larger when the reverberation time increases. Our
proposed method has the smallest error compared to SOBI and
a slightly larger overestimation error compared to SCFA. In
particular, the underestimation error (gray bar) of our proposed
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method outperforms the other two methods. In Fig. 3c, the late
reverberation PSD errors are presented. For visibility, parts
of the bars over 20 dB are not shown. Note that we use
our proposed late reverberation estimator in both SOBI and
our proposed MVID. The ‘EPS’ method in Fig. 3c refers to
replacing the negative estimates from Eq. (12) with e, the
machine precision, as used in [12]. Our proposed estimator
has similar errors compared to SCFA, both of which are much
smaller than EPS. Note that the overestimation errors of our
method are smaller than SCFA. In Figs. 3d to 3f, it is shown
that our proposed method and SCFA outperform SOBI in
general regarding to the predicted speech quality and speech
intelligibility evaluated by SSNR, PESQ and SIIB. Note that
our proposed method has better predicted intelligibility and
predicted quality in terms of PESQ but a worse SSNR than
SCFA.
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(e) SIIB performance. (f) PESQ performance.

Figure 4: Performance vs SNR. In Figs. b and c, the top gray
bars indicate the underestimation errors, the bottom colored
bars indicate overestimation errors.

In Fig. 4, we compare all the methods while changing
the noise level by increasing the SNR from 0 dB to 40 dB.
The number of time frames per segment is again eight and
the reverberation time is fixed at 0.4 s. The RTF estimation
error is first shown in Fig. 4a. For all the methods, the
RTF error is relatively small for high SNR. Our proposed
MVID method has the best performance, which outperforms
SCFA at low SNR values and outperforms SOBI at high SNR
values. In Fig. 4b, the source PSD estimation errors also

10

reduces when the SNR increases. Our proposed method has
the smallest underestimation errors, while the SCFA method
has the smallest overestimation errors. In Fig. 4c, the late
reverberation PSD errors are compared, where our proposed
late reverberation estimator and SCFA have much smaller
errors compared to using the e procedure. For visibility, parts
of the bars over 20 dB are again not shown. Note that the
overestimation errors of our method are smaller than SCFA,
both which decreases when the SNR increases. In Figs. 4d
to 4f, it is also shown that our proposed method and SCFA
outperform SOBI in general regarding to the predicted speech
quality and speech intelligibility.
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Figure 5: Performance vs the number of time frames per
segment. In Figs. b and c, the top gray bars indicate the
underestimation errors, the bottom colored bars indicate over-
estimation errors.

Fig. 5 shows the performance comparison for different time
segment durations (i.e., different numbers of time frames per
segment). For visibility, parts of the bars over 20 dB in Fig. 5c
are not shown. Our proposed method and the SCFA method
still outperform the SOBI method in estimation errors, speech
quality and speech intelligibility.

TABLE I: Estimation errors using different steps

E. | Es | B, | E™ [ B | B | EY

Step 1 052 | 10.19 | 4350 | 1.31 | 8.89 | 43.48 | 0.02
Step 1+2 | 052 | 1062 | 7.01 | 1.99 | 862 | 687 | 0.14
Step 1+2+3 | 0.52 | 1032 | 740 | 1.60 | 872 | 733 | 0.07
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To evaluate the impact of the three robustification steps we
proposed for the late reverberation estimator, we compared
the estimation errors using different steps, where we fixed
reverberation time at 0.4 s, SNR at 30 dB and the number
of time frames at 8. We can see from the table that by adding
step 2 after step 1, the late reverberation PSD error is reduced
a lot. Adding step 3 after step 2 shows slight reduction on the
error of the source PSDs. The reason is that without step 3, the
covariance matrices for the sources might not have R positive
eigenvalues, which will likely lead to negative source PSD
estimates that will be replaced by small positive value like eps,
resulting in a huge underestimation error of the source PSDs
for that frequency bin. However, the overall improvement is
not big as step 3 is only executed for some time-frequency
bins. The average iteration number of the frequency bins
executing step 3 in this experiment is 0.05 (with the total
number of frequency bins 257).

D. Experiments with recorded RIRs
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Figure 6: Geometric setup of the acoustic scene [53] with big
red circles representing the positions of sources. From left to
right, as shown by the blue arrow, the first M microphones
are used with M changing from 4 to 8.

1) Setup: In this section, we use RIRs recorded in a real
room with dimension 6 X 6 x 2.4 m [53]. We consider
two scenarios in this experiment. For the first scenario with
three sources, the geometric positions of the sources and the
microphones are shown in Fig. 6. The microphones form a
uniform linear array with 8 cm interdistance. The data base
in [53] contains RIRs measured at a 2 m distance from the
microphone array center at different angles. We convolve the
RIRs at 0°, 30° and 75° with different speech signals. We
also add white Gaussian noise to simulate the microphone
self-noise. For the second scenario with two sources, where
one source is fixed at an angle of —15° and the other source
is placed at different angles ranging from 0° to 90° in steps of
15°. We use the same STFT procedure as we used in the first
experiment to transfer the time domain signals to the frequency
domain.

2) Performance comparison: In Fig. 7, we show the per-
formance comparison for three sources for all methods as
a function of the number of microphones. The SNR is 30
dB and the reverberation time is 0.36 s. Note that when
using a larger number of microphones, the theoretical spatial
coherence matrix calculated by Eq. (7) can be close to sin-
gular, particularly for low frequency bins as observed in our
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Figure 7: Performance vs the number of microphones. In Figs.
b and c, the top gray bars indicate the underestimation errors,
the bottom colored bars indicate overestimation errors.

experiments. To avoid numerical issues, we regularize such
matrices by T' = T' + uI with 1 = 1073 in this experiment. In
terms of RTF errors in Fig. 7a, MVID and SCFA show similar
performance and both outperform SOBI. In terms of the source
PSD errors in Fig. 7b, SCFA has a lower underestimation error
than MVID, but MVJD has lower overestimation errors than
SCFA. For the late reverberation PSD errors, 'EPS’ still shows
the worst performance. In terms of the predicted speech quality
and intelligibility performance as shown in Figs. 7d to 7f, our
proposed method has performances close to the SCFA method,
while both outperform the SOBI method.

For estimators of the late reverberation PSD, we extended
another state-of-the-art method [54] from single-source to
multi-source as an additional reference method. We estimate
the PSDs of the sources and the late reverberation using the
RTF matrix estimated by our proposed MVJID method. We
minimize the following cost function:

. . . 2
’Py—@yAH+%r+%QH. (50)
The solution of the PSDs P = diag [¢1,- - , ¢r] and ¢, is

d=® b (51)
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with
(a{ial)Q |a{qaR|2 allTa;
o - i , : (52)
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a{{I‘al agI‘aR trace {I‘HI‘}
and A .
all (Py - quI) a
b= (53)

ag f’y—.évI ag
trace {I‘H (f’y — d;vl) }

The last element of qAS is the estimated late reverberation PSD.
For the case of using 8 microphones in Fig. 7, the least
squares-based estimator has an error of 11.38 ( overestimation
error 1 + underestimation error 10.38), which is larger than
our proposed estimator with an error of 6.39 (overestimation
error 0.56 + underestimation error 5.83).
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Figure 8: Performance vs source position. In Figs. b and c,
the top gray bars indicate the underestimation errors, and the
bottom colored bars indicate overestimation errors.

In Fig. 8, we show the performance comparison for two
sources for all methods for different positions of the second
source ranging from 0° to 90° by every 15°. It is shown
that the performances, on both estimation errors and pre-
dicted speech quality and intelligibility, do not change much

with different positions of the second source. Note that the
’EPS’ method for late reverberation estimation has been left
out in Figure 8c for better visibility of the other methods.
MVIJD shows comparable performance with SCFA, which
both greatly outperform SOBI. We also show the predicted
speech quality and intelligibility performance when using
oracle parameters to calculate the MWEF, which is referred to
as ’OR’ in Fig. 8.

In previous experiments, the maximum number R of sources
per time segment and frequency is assumed known. In practice,
it needs to be estimated using methods such as [27], [28]. The
estimated R can be smaller, equal or larger than R. To evaluate
this problem, we show in Table II the predicted speech quality
and intelligibility performance of our proposed method for
R—R being —1, 0 and 1. We considered two sources placed
at 0° and 60°. It is shown that our proposed method with
overestimated R = R + 1 is similar to the case of R = R.
However, the performance with underestimated R=R—1is
much worse than the other cases.

TABLE II: Predicted speech quality and intelligibility com-
parison.

R—-R -1 0 1
SSNR 0.92 3.93 3.80
SIIB 163.92 | 316.60 | 318.26
PESQ 1.00 2.04 2.01

Finally, we show the computation time using MATLAB for
processing the microphone signals with a duration of 33 s
using different methods and different number of microphones
in Table III. We can see that the SCFA method needs the

TABLE III: Computation time (in s) comparison.

M 4 5 6 7 8
SCFA 3523 | 3708 | 4362 | 5169 | 5768
MVJID 9 10 11 8 8
SOBI 8 11 10 9 9

longest run time, which increases as the number of micro-
phones increases. Our proposed method and the SOBI method
have a similar run time, which is in the order of 700 times
faster than SCFA. For our proposed method, The computation
time of the late reverberation PSD estimator mainly comes
from iterative steps with EVD. The average iteration number
for each frequency bin is less than 1 as observed in our exper-
iments. In practice, it depends on the accuracy of given noise
PSDs. The computation cost of the RTF matrix and source
PSDs estimator mainly comes from the joint diagonalization
algorithm, which is in the order of R3. Based on the analysis,
if the overall iteration number for the late reverberation PSD
estimator is I, the computational complexity of the proposed
algorithm is in the order of TM?3 + R3.

E. Experiments with real recordings

1) Setup: In this section, we used signals recorded by four
microphones mounted on a dummy head in the BRUDEX
Database [55], i.e., including natural reverberation. We con-
sidered two sources, speaker 1 at 0° and speaker 2 at 60°
with medium reverberant condition in [55]. The sampling
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frequency is 48000 Hz in this experiment and the FFT length
is 2048. The other settings for the STFT procedure are the
same as the previous two experiments. Note that besides
the real recordings, the RIRs were also measured in [55],
with which we can simulate source components such as the
late reverberation. For the spatial coherence matrix of the
late reverberation, we calculate it using the simulated late
reverberation component by

T, (k) = ! .
@wi <z,k>|2\/; d; (1, k)P

For the noise component, we assume a spatially white (spec-
trally non-white) model and use the first second recordings
(speech absent duration) to measure the noise PSD for each
frequency bin. Note that in this experiment, we added another
reference method, ARMA-FastMNMF [56] as a comparison
to a state-of-the-art speech enhancement method. For ARMA-
FastMNMF, we used the following parameters: number of
speech: 2, speech model: NMF, number of noise: 0, tap
length of the MA model Ly;4 = 8, tap length of the AR
model Lar = 4, delay of the late reverberation A = 1
and the Iterative Source Steering (ISS) algorithm was used.
Note that all methods were run in a device with Intel(R)
Core(TM) i7-10610U CPU @ 1.80GHz 2.30 GHz without
using GPU. Notice that ARMA-FastMNMF does not estimate
the underlying parametric model (as the proposed method and
SCFA), but directly performs the source separation.

2) Performance comparison: In Fig. 9, we evaluate the
predicted speech quality and intelligibility performance of
all methods. As shown in the figures, our proposed method
outperforms SOBI in all measures and outperforms ARMA-
FastMNMF in PESQ and SIIB. We also show the computation
time normalized by the time it takes for MVJD in Table IV. We
can see that although SCFA has the best performance in this
experiment, its computation time is again very high compared
to MVID. Also, MVJD is about 150 times faster than the
ARMA-FastMNMF method.

(54)

TABLE IV: Computation time comparison.
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Methods SCFA | MVJD | SOBI | ARMA-FastMNMF

Normalized run time | 832.56 1 0.89 154.41

V. CONCLUDING REMARKS

In this paper we considered the complex scenario where
multiple sources, late reverberation and noise exist concur-
rently. For this scenario, we proposed a joint estimator of the
parameters include the RTFs of the sources and the PSDs of
the sources and the late reverberation. We first proposed a late
reverberation PSD estimator that does not require the knowl-
edge of the RTFs. Then we proposed the minimum variance
joint diagonalization (MVJD) method to estimate the RTFs and
the PSDs of the sources. The proposed MVID method is more
robust than the existing joint-diagonalization SOBI method,
since we considered an optimal linear combination of a set of
covariance matrices instead of only the first one as done with

SCFA
I I I

0 1 2 3
SSNR

|3.27

Figure 9: Predicted speech quality and intelligibility perfor-
mance comparison.

SOBI. The optimality is obtained by minimizing the variances
of the error matrix of the linearly combined sample covariance
matrices. Experiments demonstrated that our proposed method
outperforms the SOBI method in terms of estimation errors,
the predicted speech quality and the speech intelligibility. The
results also show that our proposed method achieves similar
performance compared to the state-of-the-art SCFA method
but has a significantly lower computational complexity.
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