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Wideband Relative Transfer Function (RTF)
Estimation Exploiting Frequency Correlations

Giovanni Bologni, Richard C. Hendriks and Richard Heusdens

Abstract—This article focuses on estimating relative transfer
functions (RTFs) for beamforming applications. Traditional meth-
ods often assume that spectra are uncorrelated, an assumption
that is often violated in practical scenarios due to factors such
as time-domain windowing or the non-stationary nature of
signals, as observed in speech. To overcome these limitations,
we propose an RTF estimation technique that leverages spectral
and spatial correlations through subspace analysis. Additionally,
we derive Cramér–Rao bounds (CRBs) for the RTF estimation
task, providing theoretical insights into the achievable estimation
accuracy. These bounds reveal that channel estimation can be
performed more accurately if the noise or the target signal exhibits
spectral correlations. Experiments with both real and synthetic
data show that our technique outperforms the narrowband
maximum-likelihood estimator, known as covariance whitening
(CW), when the target exhibits spectral correlations. Although
the proposed algorithm generally achieves accuracy close to the
theoretical bound, there is potential for further improvement,
especially in scenarios with highly spectrally correlated noise.
While channel estimation has various applications, we demonstrate
the method using a minimum variance distortionless (MVDR)
beamformer for multichannel speech enhancement. A free Python
implementation is also provided.

Index Terms—Acoustic parameter estimation, relative transfer
function, RTF, Cramér–Rao bound, CRB, correlation, channel.

I. INTRODUCTION

SPATIAL filtering techniques can extract a target signal
from the measurements of multiple sensors, also referred

to as beamforming [1], [2]. Most beamforming techniques, such
as the minimum variance distortionless beamformer (MVDR) ,
rely on the knowledge of the relative transfer function (RTF)
between a target emitter and a sensor array to virtually steer the
array towards the direction of interest [3], [4]. RTFs generalize
the angle or direction-of-arrival (DOA) concept in scenarios
involving the proximity of the source to the receivers or the
presence of reflections. These scenarios commonly arise in
acoustics and wireless communications, radar and sonar sensing,
seismology, and medical imaging.

One fundamental assumption shared among many channel es-
timation techniques is that RTFs can be estimated independently
per frequency bin after transforming the received signal to the
short-time Fourier transform (STFT) domain [5]–[10]. This
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Fig. 1. The /ä/ phoneme uttered by a male speaker. The top left plot
depicts the waveform, while the bottom left plot shows the power spectral
density (PSD). The peaks in the PSD are found at integer multiples of
the fundamental frequency (harmonics). The right plot shows the spectral
correlation or bifrequency spectrum. The grid-like structure of peaks in the
bifrequency spectrum, whose spacing is proportional to the fundamental
frequency, indicates a correlation between harmonic components [12].

implies that the signals are realizations of wide-sense stationary
(WSS) processes or that distinct frequency components of the
signal are mutually uncorrelated. It was shown that distinct
frequency components of a random process are statistically
uncorrelated if and only if the process is WSS [11].

However, the spectral uncorrelation assumption is frequently
violated in practice. The STFT coefficients of the signals in
neighboring frequency bands are correlated due to the use of
short frame lengths and overlap-add/save techniques. In wireless
communications, non-stationarity might be due to natural
phenomena like the Doppler effect or artificial manipulations
such as in orthogonal frequency division multiplexing (OFDM)
[12], [13]. In the audio processing domain, vowels are often
modeled as an impulse train filtered by a time-varying linear
filter. Figure 1 shows the waveform x(t) of the /ä/ phoneme
uttered by a male speaker, its power spectral density (PSD),
and its bifrequency spectrum. The bifrequency spectrum
approximates E[X(f1)X(f2)

∗] for all frequencies f1, f2, where
E[·] indicates the expected value and X(f) is the Fourier
transform of x(t). The vowel in Figure 1 has a non-diagonal
bifrequency spectrum, implying that its frequency components
are correlated. First of all, this is not in line with the typical
assumptions being made: estimation of parameters or processes
from such an acoustic scene could be impaired. Secondly, we
can conclude that x(t) cannot be modeled as a realization of
a WSS process, and the ergodicity assumption does not hold
[14], [15]. Characterizing the spectral covariance of such a
process requires a phase-adjusted estimator, whose details are
discussed in this contribution as well.

Empirical studies on human auditory perception consistently
highlight the practical importance of spectral correlations
in spatial filtering. These correlations are critical in tasks
such as sound localization and speech intelligibility. For
instance, speech intelligibility in noise is influenced by the
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periodic structure of signals, with harmonically complex tones
allowing for easier detection compared to inharmonic noise [16].
Additionally, humans can localize speakers based on spatially
aliased measurements, but only when spectrally complex sounds
are present [17], [18]. Dmochowsky et al. proved that spatial
aliasing, a common issue in narrowband signals [19], has
reduced impact when the signals are wideband, regardless
of the spatial sampling period [20]. Despite the compelling
evidence of the relevance of wideband patterns, traditional
channel estimation algorithms have rarely considered them
explicitly.

Therefore, this paper aims to investigate the impact of
spectral correlations on the channel estimation task. Our con-
tributions are twofold: Firstly, we propose an RTF estimation
technique based on subspace analysis that exploits spectral and
spatial correlations. This technique consistently outperforms
the narrowband maximum-likelihood estimator (MLE), known
as covariance whitening (CW) [21]–[24], when the target
exhibits spectral correlations. Secondly, we derive conditional
and unconditional CRBs for the RTF estimation task. To the
best of our knowledge, bounds for the RTF estimation task
have not been derived before, not even for the narrowband
scenario. The bounds show that channel estimation can be
conducted more accurately if the target or the additive noise
presents inter-frequency correlations. Our findings align with
experiments showing that both parametric methods and methods
based on deep neural network (DNN) for speech enhancement,
which jointly process spectral information, outperform their
counterparts that process each frequency bin independently
[25]–[28]. Although the accuracy of the proposed algorithm
is generally close to the bound, there is some room for
improvement, especially when noise signals with high spectral
correlation are present. An additional contribution is that, in
the spirit of reproducible research, a Python implementation is
freely available online1.

The article details the signal model in Section II. In
Section III, we demonstrate how to recover the spectral-
spatial covariance matrix of the source at the receivers, and
introduce two related RTF estimation methods. Based on these
results, we propose a novel algorithm for RTF estimation
in Section IV. To better assess the algorithms’ performance,
we compare them to the lower bounds on the variance of
RTF estimation, which are derived in Section V. Numerical
evidence of the superiority of the proposed algorithm, especially
when the target presents spectral correlation, is provided in
Section VI. In Section VII, we present additional discussion
and insights on the experiments. Finally, some conclusions are
drawn in Section VIII, summarizing the essential findings and
contributions of this paper.

II. SIGNAL MODEL

In a reverberant and noisy environment, we consider the case
of a single point source impinging on an array of M ≥ 2
sensors. The signal received by the array is given in the STFT
domain as:

xk(l) = dk(l) + vk(l) = sk(l)ak + vk(l) ∈ CM , (1)

1https://github.com/Screeen/SVD-direct

where dk(l) = sk(l)ak is the target signal at the receiver,
l = 1, . . . , L is the time-frame index and the subscript
k = 1, . . . ,K denotes the frequency bin index. The STFT
coefficients of the target signal at the source are modeled by
sk(l), which are realizations of complex random variables
with zero mean. The target coefficients are not assumed to
be mutually independent over frequency. They can follow any
probability distribution. The transfer function ak ∈ CM models
the wave propagation from the target point source to the M
sensors. The transfer function is assumed to be an unknown
deterministic quantity that typically needs to be estimated in
beamforming applications. The noise coefficients vk(l) are also
modeled as complex random variables with zero mean and an
arbitrary probability distribution.

Let us now consider the coefficients for all frequency
components jointly. Noisy coefficients corresponding to a single
time frame l, for M sensors, at K frequencies, can be stacked
in a column vector as in x =

[
xT
1 ,x

T
2 , . . . ,x

T
K

]T ∈ CKM .
The time-frame index l is left out for notational convenience.
In a similar fashion, noise vectors vk, transfer function vectors
ak and desired signal dk can be stacked vertically to form
v, a, and d, respectively, so that x = d + v. In this
case, it is helpful to collect the signal coefficients sk in
a random vector s̄ = [s1, s2, . . . , sK ]T . Let us also define
s = s̄ ⊗ 1M = [s11

T
M , s21

T
M , . . . , sK1T

M ]T , where ⊗ is the
Kronecker product and 1M is the M -dimensional all-ones
vector. Next, let

A = diag(a) = diag(a11, . . . , a1M , a21, . . . aKM ), (2)

contain the transfer functions for all frequencies and sensors.
The vector of desired signals is then given by

d = As = A(s̄⊗ 1M ), (3)

such that the noisy coefficients for the wideband model can
be written as

x = d+ v = As+ v. (4)

Notice that Equation (4) generalizes the narrowband model with
multiplicative transfer function (MTF) approximation (Equa-
tion (1)) to a wideband scenario. In the MTF approximation,
the linear convolution in the time domain is represented as
multiplication in the STFT domain [1]. This constrains the
transfer functions ak to be at most K samples long in the time
domain, effectively capturing the early reflections only, and
neglecting the late reverberation components.

Next, we model the spatial and spectral correlations between
the signals. Spatial correlation matrices are widely used in
array processing to model relations between signals received at
different sensors. Here, we also consider spectral correlations
between different frequency components. The spectral-spatial
covariance matrix Rx = E

[
xxH

]
∈ CKM×KM , can be

expressed as

Rx =


rx(1, 1) rx(1, 2) · · · rx(1,K)
rx(2, 1) rx(2, 2) · · ·

...
...

. . .
...

rx(K, 1) rx(K, 2) · · · rx(K,K)

 , (5)
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(d)
Fig. 2. Phase correction improves estimation of the spectral covariance. (a) Phase components of the STFT of the original signal yk(l); (b) spectral covariance
of yk(l); (c) phase components of the STFT of the phase-corrected signal yck(l); (d) spectral covariance of yck(l).

where (·)H indicates the conjugate transpose operation, and
rx(i, j) = E

[
xix

H
j

]
∈ CM×M is the spectral-spatial covari-

ance matrix at two arbitrary frequencies i, j. When noise and
target signal are statistically uncorrelated, we have Rx =
Rd + Rv, that is, rx(i, j) = E

[
sis

∗
j

]
aia

H
j + E

[
viv

H
j

]
. Let

us now introduce alternative formulations of the covariance
matrices that will be useful for our analysis. Using the definition
in Equation (3), the signal covariance matrix Rd = E

[
ddH

]
can be expressed as

Rd = E
[
AssHAH

]
= AE

[
ssH

]
AH = ARsA

H , (6)

where Rs is defined as Rs = E
[
ssH

]
. Using the properties

of the Kronecker product, the covariance matrix Rs can, in
turn, be rewritten as

Rs = E
[
(s̄⊗ 1M )(s̄⊗ 1M )H

]
= E

[
s̄s̄H ⊗ 1M1H

M

]
= E

[
s̄s̄H

]
⊗ 1M×M = Rs̄ ⊗ 1M×M , (7)

where 1M×M is the all-ones matrix of size M ×M and

Rs̄ = E
[
s̄s̄H

]
∈ CK×K . (8)

III. BACKGROUND INFORMATION

This section begins by reporting a strategy to estimate sample
spectral-spatial covariance matrices. It then demonstrates that
the desired signal covariance matrix Rd is singular, with its
rank being limited by the number of frequency components
K. Section III-C explores how the eigenvectors of Rx and
Rd are affected by additive noise, and it reports a strategy for
recovering Rd. Finally, two well-known algorithms for RTF
estimation are introduced.

A. Phase-adjusted sample covariance matrix
The commonly used sample covariance matrix estimate, serving
as the MLE for jointly Gaussian WSS data, is expressed as

R̃x =
1

L

L∑
l=1

x(l)x(l)H , (9)

where l is the realization index. Alternatively, l can be treated
as a time-frame index assuming second-order ergodicity.

However, when spectral correlations are present, the WSS
assumption becomes inaccurate, requiring an alternative es-
timator for the spectral-spatial covariance matrices. In the
estimation of spectral correlations from STFT data, it is crucial
to establish a connection among phase components across all
frames and frequencies. In most implementations of the STFT,
phase components are linked to the beginning of each frame.

Therefore, there is a need to connect these phase components
to a common reference point, such as the signal’s onset, as
mentioned by Antoni [29]. The phase-adjusted noisy STFT
data at frequency k is given by:

xc
k(l) = xk(l)e

−j2πlRk/K , l = 1, . . . , L, (10)

where R denotes the block shift between frames.
Let us examine the impact of phase correction through

an example. Consider a harmonic signal of the form y(t) =∑3
h=1 cos(2πf0ht), t ∈ N, where f0 is the fundamental

frequency in normalized units, and h denotes the harmonic
index. The harmonic components at frequencies f0h for
h = 1, 2, 3 are deterministic, thus perfectly correlated, meaning
that knowing one component allows us to infer the value of
another. In the STFT domain, we denote the harmonic signal
as yk(l), l = 1, . . . , L, and its phase-corrected version as
yck(l). The overlap of the STFT is set to 75%, corresponding
to R = K/4. Figure 2a shows the phase components of the
three non-zero frequency components of yk(l) across time
frames. Due to the misalignment between the block-shift R
and the periodicities of y(t), the phases of the harmonics
components appear to change randomly from frame to frame.
However, after applying phase correction to get yck(l), we can
accurately determine the phase of all components (Figure 2b)
with respect to the time origin, t = 0. Let us also analyze the
impact of phase correction on the estimation of the spectral
correlations. For the phase-corrected signal yck(l) (Figure 2d),
the spectral correlation is maximal across all components, while
the original yk(l) signal incorrectly appears to exhibit a lower
spectral correlation due to spurious effects of phase cancellation
(Figure 2c).

The phase correction becomes superfluous when dealing
with products of components at the same frequency, as the
conjugation leads to the cancellation of the phase term:
xc
k(l)x

c
k(l)

H = xk(l)xk(l)
H . Similarly, the exponential term in

Equation (10) is identical to one, thus ineffective, when R = K,
i.e., when adjacent frames do not overlap, or when independent
realizations of the signals are used. Therefore, the correction
of Equation (10) is applied solely in Sections VI-C and VI-D
to the overlapping STFT frames of real speech signals before
covariance matrix estimation, so that, for k1, k2 = 1, . . . ,K,

r̂x(k1, k2) =
1

L

L∑
l=1

xc
k1
(l)xc

k2
(l)H

=
1

L

L∑
l=1

xk1
(l)xk2

(l)He−j2πlR(k1−k2)/K .

(11)
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B. Upper bound on the rank of target covariance matrix

Lemma 1 rank(Rd) ≤ K

Proof. To support this claim, we first state two well-known
properties of the matrix rank. Consider two matrices X ∈
Cm×n and Y ∈ Cn×p. According to [30], we have that:

rank(XY ) ≤ min(rank(X), rank(Y )), (12)
rank(X ⊗ Y ) = rank(X) rank(Y ). (13)

The covariance matrix Rs̄ = E
[
s̄s̄H

]
in Equation (8) obeys

rank(Rs̄) ≤ K. The rank of the all-one matrix, instead, is
rank(1M×M ) = 1. From Equation (7) and the rank property
of Kronecker products in Equation (13) it follows that

rank(Rs) = rank(Rs̄ ⊗ 1M×M ) = rank(Rs̄) ≤ K. (14)

Moreover, let at least K of the coefficients of the diagonal RTF
matrix A be non-zero by assumption, so that rank(A) ≥ K.
It is now possible to analyze the matrix rank of Rd:

rank(Rd) = rank
(
ARsA

H
)

(15)
≤ min (rank(A), rank(Rs)) ≤ K, (16)

where the inequality follows from the rank matrix product
property in Equation (12) and Equation (14). This completes
the proof.

C. Estimation of the target covariance matrix

Suppose that Rx is known, and let γ2 be the noise variance.
Estimated quantities are denoted as (̂·). For example, the
estimated noise variance is represented as γ̂2. Assuming
that the noise exhibits uniform power across both space and
frequency, remaining uncorrelated in both domains, we have
Rv = γ2IKM . As the identity matrix is diagonalizable by any
unitary matrix,

Rx = Rd + γ2I = V ΛV H + γ2I = V (Λ+ γ2I)V H ,

where V is the eigenvector matrix of Rd, and Λ is the diagonal
matrix containing the eigenvalues of Rd. Therefore, if the esti-
mated, phase-adjusted sample covariance matrix is decomposed
as R̂x = V̂ Λ̂V̂ H , the covariance matrix of the target at the
sensors can be approximated by R̂d = V̂ max(Λ̂−γ̂2I, 0)V̂ H ,
where the max(·, ·) operator forces the eigenvalues of the
Hermitian positive semidefinite (HPSD) matrix R̂d to be non-
negative.

If spatially or spectrally colored noise is present, the
eigenvectors of Rx and Rd will differ. However, estimating R̂d

and computing its eigenvalue decomposition is still possible if
an estimate of the noise covariance matrix R̂v is available and it
is full-rank, hence invertible. To ensure that this requirement is
satisfied, we apply diagonal loading, which consists of adding
a scaled identity matrix to the estimated noise covariance
matrix: R̂v ← R̂v + ϵI , where ϵ is a small positive value.
The clean covariance matrix R̂d can be estimated from the
generalized eigenvalue decomposition (GEVD) of R̂x and R̂v

or from the eigenvalue decomposition of the prewhitened noisy
covariance matrix R̂

−1/2
v R̂xR̂

−1/2
v . The present examination

will be limited to the GEVD because the two procedures are

theoretically equivalent [31], [32]2. Given the estimates R̂x

and R̂v , an estimate of the desired covariance matrix R̂d can
be obtained as follows:

1) Computation of R̂xU = R̂vUD or, equivalently,
QHR̂x = DQHR̂v, where D are the generalized
eigenvalues, U are the right generalized eigenvectors,
Q are the left generalized eigenvectors, and U = Q−H .

2) Partitioning of the left eigenvectors Q = [Qx Qv], where
Qx comprises of the first Kd columns of Q.

3) Estimation of R̂d as R̂d = Qx max(Dx − I, 0)QH
x ,

where Kd is the estimated rank of Rd, and Dx is a diagonal
subblock formed by the first Kd columns and rows of D.
By virtue of Lemma 1, Kd ≤ K. The number of frames L
available for estimating the covariance matrices also constrains
the maximum possible matrix rank, such that Kd ≤ L. As a
consequence, in steps 2) and 3), Kd = min (K,L) eigenvalue-
eigenvector pairs are retained. Note that, due to the sparse
spectral distribution of speech, the actual rank of Rd might be
lower than Kd. Specifically, since many frequency components
of speech signals are zero, the corresponding rows and columns
in Rd will also be zero, reducing the rank of the matrix.

D. Covariance whitening and covariance subtraction
The GEVD routine detailed in Section III-C is also widely
used in traditional, narrowband processing for estimating the
target spatial covariance matrix. It is indeed at the core of
the covariance whitening (CW) algorithm, one of the most
effective techniques for RTF estimation [21]–[24]. Let the
(narrowband) noisy spatial covariance matrix be represented
by Rx(k) = E

[
xk(l)xk(l)

H
]
∈ CM×M and the noise spatial

covariance matrix by Rv(k). The CW technique consists of
estimating the generalized left eigenvectors of (Rx(k),Rv(k))
for each discrete frequency k, and then retaining the eigenvector
corresponding to the largest eigenvalue. Assuming that a single
speaker is present, the rank of Rd(k) = E

[
|sk|2

]
aka

H
k is 1.

Therefore, the principal eigenvector equals the target RTF ak

up to a multiplicative factor.
Covariance subtraction (CS) is another popular technique

for RTF estimation. CS estimates the target spatial covariance
matrix by subtracting the noise covariance matrix from the
observed covariance matrix, i.e., RCS

d (k) = Rx(k) −Rv(k).
The RTF is then estimated from the principal eigenvector of
RCS

d (k). This simpler technique is generally less accurate then
CW [23].

IV. PROPOSED RTF ESTIMATION ALGORITHM:
SVD-DIRECT

In the preceding sections, the investigation focused on the
spectral-spatial covariance matrix of a noisy signal received
from multiple sensors. The knowledge gained from this
investigation can be applied to estimate the channel a, provided
that estimates of the spectral-spatial covariance for both the
noisy signal R̂x and the noise-only signal R̂v are available.
To this aim, we introduce a new method for RTF estimation.

2A standard routine for computing the GEVD of HPSD matrices is based
on Cholesky decomposition [30, Algorithm 8.7.1]. It is used in the popular
LAPACK drivers [33] that are the backbone of Matlab and Numpy/Scipy.
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The proposed algorithm is based on a row partitioning of the
estimated spectral-spatial covariance R̂d, followed by an SVD
on each frequency subblock. The approach is named SVD-
direct to emphasize the simplicity of its implementation and
the central role played by the singular value decomposition.
The proposed method extends the CW technique (Section III-D)
to a wideband scenario, thus leveraging inter-frequency cor-
relations for better estimation accuracy. Unlike CW, multiple
frequency components are processed simultaneously both in
the prewhitening and in the ensuing decomposition step.

The basic idea of the proposed RTF estimation algorithm can
be explained by an example. First, let us introduce a simplified
case with K = 2 frequency components, to gain some intuition
on the structure of Rd = ARsA

H . We have that

Rd =

[
E
[
|s1|2

]
a1a

H
1 E[s1s∗2]a1a

H
2

E[s2s∗1]a2a
H
1 E

[
|s2|2

]
a2a

H
2

]
= (17)

=

[
σ2
1a1a

H
1 σ12a1a

H
2

σ∗
12a2a

H
1 σ2

2a2a
H
2

]
=

[
R

(1)
d

R
(2)
d

]
, (18)

where we have introduced the auxiliary variables σ2
1 =

E
[
|s1|2

]
, σ2

2 = E
[
|s2|2

]
, σ12 = E[s1s∗2] to simplify the

notation. The transfer function for the ith frequency is ai ∈ CM .
We also defined the block-matrices R(1)

d ,R
(2)
d ∈ CM×2M . The

absence of spectral correlations in the source signal s would
lead to E[s1s∗2] = E[s2s∗1] = 0. Now, consider the block matrix
R

(1)
d =

[
σ2
1a1a

H
1 σ12a1a

H
2

]
in Equation (18). Notice that

R
(1)
d is a rank-1 matrix, whose left principal singular vector is

proportional to a1. The right principal singular vector of R(1)
d

is proportional to [aT
1 aT

2 ]
T . To see this, consider the matrix

product

R
(1)
d (R

(1)
d )H = (σ2

1∥a1∥2 + σ2
12∥a2∥2) a1a

H
1 (19)

from which it follows that R
(1)
d (R

(1)
d )H is a rank-1 matrix

with principal eigenvector a1
3. It follows that by decomposing

R
(1)
d with an SVD and selecting the principal left singular

component, a1 can be recovered up to a scalar factor.
The procedure above can be repeated for each subblock

R
(k)
d ∈ CM×KM , k = 1, . . . ,K, leading to the proposed wide-

band channel estimation method, SVD-direct (Algorithm 1).
The function Normalize is defined as Normalize(a(k)) =
a(k)/[a(k)]r, and [a(k)]r is the entry corresponding to the r-th
(reference) sensor.

V. CRAMÉR–RAO LOWER BOUND

Based on the spectral-spatial covariance matrix of the signal
received at the multiple sensors, we derived an algorithm
for RTF estimation, taking correlation across frequency into
account. To determine how close this algorithm is to the optimal
performance, we compare it to the CRB.

In the following, we first define the CRB and show how
to derive it when estimating a deterministic function of
an unknown parameter. The CRB is then calculated for
two scenarios: (i) a setting where the target signal s(l) is
deterministic and known (Section V-B), and (ii) a scenario
where the target signal has a known covariance matrix Rs,

3Throughout the paper, ∥ · ∥ indicates the 2-norm.

Algorithm 1 SVD-direct

Input: R̂x, R̂v,M,K
Output: RTF estimates â

# Estimate R̂d from the GEVD (Section III-C).
R̂d ← GEVD_routine(R̂x, R̂v)

# Partition in K “fat” M ×KM blocks
[(R̂

(1)
d )T , (R̂

(2)
d )T , . . . , (R̂

(K)
d )T ]T ← R̂d

# Per each frequency
for k = 1, . . . ,K do

P (k)D(k)Q(k) ← SVD(R̂(k)
d )

# Rescale left principal singular vectors
â(k) ← Normalize(p(k)

1 ).
end for

but the signal realizations are unknown (Section V-C). Note
that the former bound will lead to an unrealistic lower bound,
as in the current scenario, s(l) is never known. The latter
bound is realistic as it only assumes that the first- and second-
order statistics are known. The two settings are also known
as the deterministic or conditional CRB, and stochastic or
unconditional CRB, respectively [34]. Although the CRBs are
derived for the wideband scenario, they encompass the bounds
for narrowband RTF estimation as a specific case.

It is worth noting that the CRB for proper complex-valued
multivariate Gaussian parameters has been previously explored.
In [35, Eq. 15.52], an approach that treats the real and
imaginary components of the parameters independently was
adopted. Conversely, in [36, Eq. 6.55], the Wirtinger derivatives
were employed. However, neither of these references extends
its analysis to incorporate further deterministic transformations.

A. Problem formulation

Let us consider the case where the parameters θ to be
estimated are complex-valued, deterministic but unknown,
and the observed data matrix is X = [x(1) . . . x(L)]. The
distribution of the observed data is p(X;θ). The Fisher
information matrix (FIM) is found as the negative expected
Hessian of the log-likelihood function:

Iθ = −E
[
∇θ ∇H

θ ln p(X;θ)
]
= −E

[
∇2
θ ln p(X;θ)

]
, (20)

where the expectation is taken with respect to p(X;θ). The
gradient and the Hessian are defined as

[∇θf ]i = ∂f/∂θi, [∇2
θf ]ij = ∂2f/∂θi∂θ

∗
j ,

and the partial derivatives are Wirtinger derivatives [37]. The
covariance matrix Rθ̂ of any unbiased estimator θ̂ of θ satisfies
Rθ̂ ⪰ I−1

θ
4. When the quantity to estimate is given by a

function ϕ = g(θ) of some underlying parameter, the bound
follows as [38]

Rϕ̂ ⪰ (∇θg)I
−1
θ (∇H

θ g), (21)

4A ⪰ B means A − B is positive semidefinite with A and B being
Hermitian
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where Rϕ̂ is the covariance matrix of the estimator ϕ̂ = g(θ̂).
In the present case, we define a function g : C2KM 7→ CKM

that transforms a transfer function to a relative transfer function.
It is given by

g(θ) = g([aT aH ]T ) = a/aref, (22)

where the division is intended element-wise and

aref = [a1r1
T
M , a2r1

T
M , . . . , aKr1

T
M ]T ,

is the vector with the responses of the rth (reference) sen-
sor at all frequencies. Notice that g(·) corresponds to the
Normalize(·) function defined in Section IV, with the only
difference that g(·) acts on transfer functions for all frequencies
and sensors simultaneously. This function can be readily
modified to accommodate various strategies for reference sensor
selection [1, Eq. 10].

B. Conditional Cramér–Rao bound

Consider the model from Equation (4):

x(l) = As(l) + v(l), l = 1, . . . , L. (23)

Firstly, we analyze the case where the signal s(l) is known
and the absolute transfer function A, defined in Equation (2),
is deterministic but unknown. The noise v(l) is a complex
circular Gaussian random process with known spectral-spatial
covariance Rv. The vector of unknown parameters is θ =
[aTaH ]T ∈ C2KM . The observed data X follows a complex
Gaussian distribution so that the log-likelihood is given by

ln p(X;θ) = −L ln |πRv| −
L∑

l=1

v(l)HR−1
v v(l). (24)

We have the following result.

Theorem 1 (Conditional CRB) The variance of any condi-
tional RTF estimator is lower bounded by:

CRB[g(θ̂)]i =
[
(∇ag)(B

∗)−1(∇H
a g)

]
ii
, (25)

for i = 1, . . . ,M , where the matrix B is defined as B =∑L
l=1 S(l)

HR−1
v S(l) and S(l) = diag(s(l)).

Proof. See Appendix A.

Interpretation: For ease of analysis, consider the case
where the noise is spatially and spectrally uncorrelated,
i.e., Rv = γ2IKM . In this scenario, the i-th element on
the diagonal of the Fisher information matrix is given by
[Iθ]ii = γ−2

∑L
l=1 |si(l)|2. As the noise variance γ2 increases,

the Fisher information [Iθ]ii decreases. Conversely, increasing
the number of frames L available for estimation results in
higher Fisher information, as the quantity |si(l)|2 is always non-
negative. Thus, the achievable accuracy of the RTF estimation
decreases with higher noise power and improves with more
time frames.

C. Unconditional Cramér–Rao bound
Consider again the model in Equation (23). This time, we
examine the more realistic scenario where the spectral-spatial
covariance of the target signal Rs is known but not the
signal itself. The transfer function A is again deterministic
but unknown. This bound is then expected to be greater than
the one derived in Theorem 1 because the target signal is
only known up to its second-order statistics. In this case, the
log-likelihood function is given by:

ln p(X;θ) = −L ln |πRx| − L tr (R̂xR
−1
x ), (26)

where Rx = ARsA
H +Rv . We have the following result.

Theorem 2 (Unconditional CRB) In the unconditional
settings, the variance of any unbiased RTF estimator is lower
bounded by:

CRB[g(θ̂)]i =
[
(∇ag)C(∇H

a g)
]
ii
, (27)

for i = 1, . . . ,M , where C is obtained by selecting the first
KM rows and columns from the inverse FIM I−1

θ .

Proof. See Appendix B.

Interpretation: Consider the case where the noise is un-
correlated, i.e., Rv = γ2IKM . The i-th element on the
diagonal of the Fisher information matrix is given by [Iθ]ii =
L tr

(
R−1

x FiR
−1
x Gi

)
. As the number of frames L available for

estimation increases, the Fisher information increases linearly.
Thus, as we have seen for the conditional CRB in Section V-B,
the achievable accuracy of the RTF estimation improves with
more time frames. Also, as the noise variance γ2 increases,
the Fisher information decreases, since R−1

x = (Rd +Rv)
−1.

The numerical simulations in the following sections also reveal
that the unconditional CRB is always equal to or higher than
the conditional CRB. Intuitively, when estimating the RTF,
knowing the target signal itself would be more useful than
knowing the signal statistics only. For further analytical insights,
the reader can refer to [34].

VI. EXPERIMENTS

In the preceding sections, we developed an RTF estimation
algorithm that considers both spectral and spatial correlations.
We computed conditional and unconditional CRBs to gauge
achievable accuracy. Following this, we conduct simulations to
compare the performance of our proposed wideband algorithm
(SVD-direct) to the benchmark narrowband method (CW)
and the established performance bounds. We employ two
error metrics, the root-mean-squared-error (RMSE) and the
Hermitian angle [24]. The RMSE is defined as:

RMSE = 10 log

√
1

KM
∥â− a∥2 (dB), (28)

while the Hermitian angle is calculated as:

1

K

K∑
k=1

acos
( | âH

k ak|
∥âH

k ∥∥ak∥

)
(rad). (29)

The RMSE accounts for discrepancies in the magnitude and
phase, whereas the Hermitian angle depends exclusively on
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the angle between the RTFs. The CRBs are only defined for
error measures based on the MSE. Therefore, these bounds
are not shown in the plots that employ the Hermitian angle
metric. We also define the signal-to-noise ratio (SNR) in the
frequency domain as:

SNR = 10 log

∑KM
i=1 [Rd]ii∑KM
i=1 [Rv]ii

(dB). (30)

In all plots of Sections VI-A, VI-B and VI-D, points connected
by a continuous red line show the error for the proposed
algorithm (Algorithm 1); points connected by a blue dotted
line show errors for the benchmark algorithm (CW); points
connected by a green dash-dotted line show the conditional
CRB (Theorem 1); points connected by a purple dashed line
show the unconditional CRB (Theorem 2).

We conduct five sets of experiments to explore increasingly
realistic scenarios. In the first two sets of experiments (Sec-
tions VI-A and VI-B), we analyze scenarios where independent
realizations of the signals are drawn from ideal multivariate
Gaussian distributions. In Section VI-A, the target and noise
powers at all frequencies are set to the same value and then
rescaled to the desired SNR. Section VI-B describes a more
realistic scenario where target and noise powers vary across
frequencies. Results are shown for a single random draw of
the target TF a and of the actual covariance matrices Rs

and Rv because the CRB is defined for specific parameter
values. Nonetheless, similar outcomes are observed for other
realizations. To simulate the complex channel vector a, we
generate two uniformly distributed random vectors with values
from -1 to 1 and use them for the real and imaginary parts. For
the synthetic data of Sections VI-A and VI-B, the lines in the
figures are the mean results averaged across 5000 Montecarlo
realizations. The faded area represents the 95% confidence
interval [39]. The bounds are evaluated at the actual values of
the parameters.

The other three sets of experiments deal with real data.
The covariance matrices are thus estimated from overlapping
STFT frames using the phase-corrected estimator introduced
in Section III-A. Section VI-C investigates the correlation
coefficients of measured speech signals. The experiments of
Sections VI-D and VI-E apply the proposed algorithms to
recorded anechoic speech convolved with real room impulse
responses (RIRs), and evaluate both the RTF estimation
accuracy and the effect of employing the estimated RTFs
for beamforming. The ground truth TF a is computed as
the discrete Fourier transform of the first K samples of the
RIR. We perform 50 Montecarlo repetitions of the real-data
experiments. Gaussian noise at 40 dB SNR is added to v in
all experiments to account for sensor noise and simultaneously
improve numerical conditioning of the inverse of the noise
covariance matrix Rv. We also measure the computational
complexity of the algorithm in Section VI-F. As mentioned in
Section I, all the simulations are implemented in Python, and
the code to generate all figures in the paper is freely available
online.

A. Equicorrelated, equal powers
The ‘equicorrelated’ formulation, also considered in [40],
assumes that the noise signal exhibits identical variances at all

sensors and frequency components. The target signal has unit
variance at all frequency components. The cross-expectations
over different frequency components are υf for the noise and
ρf for the target. Because the frequency correlations are non-
zero, the covariance matrices Rx and Rv describe non-WSS
processes. Taking again the case of M = 2 sensors and K = 2
frequency components to simplify the exposition, the noise
covariance matrix Rv is given by:

Rv = γ2


1 0 υf 0
0 1 0 υf
υ∗
f 0 1 0
0 υ∗

f 0 1

 , (31)

where υf ∈ [0, 1] and γ2 is scaled according to Equation (30)
to yield the desired SNR. Similarly, the desired covariance
matrix at the source Rs = Rs̄ ⊗ 1M×M is given by:

Rs =

[
1 ρf
ρ∗f 1

]
⊗ 1M×M =


1 1 ρf ρf
1 1 ρf ρf
ρ∗f ρ∗f 1 1
ρ∗f ρ∗f 1 1

 . (32)

The desired covariance matrix at the receivers follows from
Equation (6). The stimuli s(l) and v(l), where l is the
realization index, are generated through affine transformations
applied to L independent and identically distributed realizations
n(l) of a white complex multivariate Gaussian distribution
n ∼ CN (0, I). For example, s(l) = R

1/2
s n(l), and this im-

plies s(l) ∼ CN (0,Rs). The estimates of the target and noise
covariance matrices are derived through the sample covariance
estimator of Equation (9). The phase-corrected estimator in
Equation (11) is indeed superfluous when independent signal
realizations are available. Unless specified differently, the SNR
is set to −5 dB in all experiments. The signal correlation is set
to ρf = 0.25, the noise correlation to υf = 0.25, the number of
frames to compute the sample covariance matrices to L = 1000,
the number of sensors to M = 2 and the FFT length to K = 5.
The true noise covariance matrix Rv is used in all algorithms,
aligning with the CRB assumptions. Nonetheless, we noticed
similar results when estimating Rv from a separate realization
of the noise-only signal. The algorithms and the bounds are
tested by varying four independent parameters: noise correlation
υf , target correlation ρf , number of time frames L, and SNR.

Varying noise correlation υf : In the first experiment, we
analyze the performance of the algorithms as the noise
frequency correlation υf varies between 0 and 1 (Figure 3).
We generally observe that the RMSE and the Hermitian angle
metrics follow similar trends. Let us first consider the scenario
where the target has low correlation (ρf = 0.25), corresponding
to Figures 3a and 3b. The two algorithms perform equally
well when the noise correlation υf is low, while the proposed
method shows improved accuracy for high values of υf . In other
words, the SVD-direct algorithm can partially take advantage
of increased noise correlation, while the benchmark algorithm
cannot. Now, consider the case where the target shows high
correlation (ρf = 0.75), corresponding to Figures 3c and 3d.
The proposed method outperforms the benchmark for all values
of υf , with improvements of approximately 3 dB in RMSE
and 0.02 rad in Hermitian angle. Examining the conditional
and unconditional CRBs, we note that substantial accuracy
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Fig. 3. Algorithm performance under varying noise frequency correlation υf ,
with different levels of target correlation ρf . The top two plots (a) and (b)
represent a less correlated target (ρf = 0.25), while the bottom row (c) and
(d) show a highly correlated target (ρf = 0.75). Each column corresponds to
different evaluation metrics: the left column displays the RMSE, and the right
column shows the Hermitian angle.

improvements are achievable when the noise exhibits a high
correlation.

Varying target correlation ρf : In this section, we analyze
the performance of the algorithms as the target frequency
correlation ρf varies between 0 and 1 (Figure 4). Because
SVD-direct is explicitly designed to take advantage of spec-
tral correlations in the target, we expect it to yield better
performance for higher values of ρf . If the noise has low
correlation (υf = 0.25, corresponding to the top row in
Figure 4), the two algorithms perform equally well for low
target correlation values ρf . Additionally, we observe that
the proposed method can fully exploit the target correlation
and shows improvements in the accuracy of up to 4 dB in
RMSE and 0.02 rad in Hermitian angle for high values of ρf .
The benchmark algorithm is not affected by variations in the
target spectral correlation. Notice that the proposed algorithm
achieves the CRB if a high target correlation is present, meaning
that further improvements in accuracy in this scenario are not
possible. Interestingly, the unconditional performance bound
exhibits different trends for low and high noise correlation. The
unconditional bound decreases with higher target correlations
when the noise correlation is low (Figure 4a). Conversely, the
maximum accuracy is lower as the target correlation increases
for high noise correlation (Figure 4c). This aligns with findings
from previous studies [40]. This seeming discrepancy can be
better understood through analogy: when two point sources
are located close together in space, they show maximal spatial
correlation and exhibit similar correlation patterns, making it
difficult to separate them. In our experiment, the noise and
target sources have high spectral correlation, and they share
the same correlation pattern (Equations (31) and (32)). We
might say that they are “spectrally superimposed” because
their powers and correlation coefficients are the same, yielding
very similar spectral covariance matrices. As a result, they are
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Fig. 4. Algorithm performance under varying target frequency correlation ρf ,
with different levels of noise correlation υf . The top two plots (a) and (b)
represent less correlated noise (υf = 0.25), while the bottom row (c) and (d)
show highly correlated noise (υf = 0.75). The left column corresponds to
RMSE, and the right column shows the Hermitian angle.

harder to distinguish than two spectrally independent sources.
Varying number of frames L: We now analyze the perfor-

mance of the algorithms when the number of frames L to
estimate the target covariance matrix Rd is varied between
L = 10 and L = 5000 (Figure 5). As expected, both algorithms
perform better when more frames are available. For low values
of target and noise correlation (Figures 5a and 5b), the two
algorithms perform similarly when the number of available time
frames is large, whereas the proposed algorithm is slightly less
accurate when L is small. When the target correlation is high,
the wideband method shows smaller errors for any number of
frames L > 10 and converges to the unconditional CRB for a
high number of frames.

Varying SNR: This experiment analyzes the performance of
the algorithms when the SNR varies between −10 and 20 dB
(Figure 6). Unsurprisingly, both algorithms perform better when
the noise is less prominent. The methods perform similarly for
low target correlation values (Figures 6a and 6b). In contrast,
for high target correlation (Figures 6c and 6d), the proposed
method shows significant performance gains of up 8 dB in
RMSE and 0.05 rad in Hermitian angle in noisy scenarios.
Both algorithms are close to the unconditional CRB for high
SNR values.

B. Equicorrelated, different powers
In the second set of experiments, we extend the ‘equicorrelated’
scenario described in Section VI-A, by incorporating varying
signal powers across different frequency components and
sensors. This scenario is not only more realistic than the
previous one, but it also leads to more diverse spectral
correlation patterns — that is, covariance matrices — for the
target and the noise signal, limiting the “spectral superposition”
phenomenon observed in Section VI-A. In this simulation
model, special care must be taken to ensure the validity of the
simulated covariance matrices Rv and Rs.
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Fig. 5. Algorithm performance under varying number of time frames L, with
different levels of target correlation ρf . The top two plots (a) and (b) represent
a less correlated target (ρf = 0.25), while the bottom row (c) and (d) show a
highly correlated target (ρf = 0.75). The left column corresponds to RMSE,
and the right column shows the Hermitian angle.
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Fig. 6. Algorithm performance under varying SNR, with different levels of
target correlation ρf . The top two plots (a) and (b) represent a less correlated
target (ρf = 0.25), while the bottom row (c) and (d) show a highly correlated
target (ρf = 0.75). The left column corresponds to RMSE, and the right
column shows the Hermitian angle.

Let [v]km = vkm be the noise signal at frequency k
and sensor m, with variance E

[
|vkm|2

]
= γ2

km. By the
Cauchy–Schwarz inequality, it is known that the covariance be-
tween the two discrete complex random variables vk1m1

, vk2m2
,

corresponding to the (k1m1, k2m2) element of Rv, is upper-
bounded by:

|E
[
vk1m1v

∗
k2m2

]
|2 ≤ E

[
|vk1m1 |2

]
E
[
|vk2m2 |2

]
. (33)

Therefore, we can simulate Rv with a two-step procedure. First,
the variances γ2

km on the diagonal of Rv are drawn from a
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Fig. 7. Algorithm performance for non-uniform target and noise powers
under varying noise frequency correlation υf , with different levels of target
correlation ρf . The top two plots (a) and (b) represent a less correlated target
(ρf = 0.25), while the bottom row (c) and (d) show a highly correlated target
(ρf = 0.75). The left column corresponds to RMSE, and the right column
shows the Hermitian angle.

uniform distribution U(ϵ, 0.5), where ϵ > 0 is a small positive
number. Next, the covariance values are calculated as

E
[
vk1m1v

∗
k2m2

]
=

{
0, if m1 ̸= m2,

υf

√
γ2
k1m1

γ2
k2m2

if m1 = m2,
(34)

where the factor υf ∈ [0, 1] models the noise inter-frequency
correlation. Because υf ≤ 1, Equation (34) leads to covariance
values that are always smaller than their theoretical maxima.
The correlations across different sensors are set to 0 since we
model spatially uncorrelated noise. Finally, Rv is rescaled by
a global noise variance γ2 to yield the desired SNR according
to Equation (30). Analogously, the desired covariance matrix
at the source is given by:

[Rs̄]k1k2 =

σ2
k1k2
∼ U(ϵ, 0.5) if k1 = k2,

ρf

√
σ2
k1k1

σ2
k2k2

if k1 ̸= k2.
(35)

The desired covariance matrix at the receivers follows again
from Equations (6) and (7). The sampling procedure and the
other simulation parameters follow from Section VI-A.

Varying noise correlation υf : The performance of the
algorithms is examined as the noise frequency correlation
υf varies from 0 to 1 (Figure 7). The wideband algorithm
outperforms the narrowband one in all cases. The difference in
accuracy is larger when the target correlation ρf is higher
(Figures 7c and 7d), reaching an improvement of up to
8 dB RMSE and 0.05 rad. Notice that the performance gains
are more significant than in the ‘equal powers’ scenario of
Section VI-A. We also observe that the error of the SVD-direct
algorithm slightly decreases for very high noise correlation
υf ≥ 0.75. Still, the gap between the unconditional CRB and
the algorithms indicates that further improvements are possible.
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Fig. 8. Algorithm performance for non-uniform target and noise powers,
under varying target frequency correlation ρf , with different levels of noise
correlation υf . The top row ((a) and (b)) represents less correlated noise
(υf = 0.25), while the bottom row ((c) and (d)) shows highly correlated noise
(υf = 0.75). The left column corresponds to RMSE, and the right column
shows the Hermitian angle.

Varying target correlation ρf : Next, we turn to one of
the key experiments of the present study, where we analyze
the performance of the algorithms as the target frequency
correlation ρf varies between 0 and 1 for arbitrary noise
and signal powers (Figure 8). The wideband algorithm takes
advantage of higher target spectral correlations ρf , as already
observed in Section VI-A: both for low and high noise
correlation, SVD-direct has significantly better performance
for higher values of ρf , reaching improvements of 10 dB
RMSE and 0.05 rad Hermitian angle. On the other hand,
CW performs slightly better when the target correlation is
completely absent (ρf = 0). A likely explanation is that the
narrowband approach exploits the a priori knowledge that the
target signal is uncorrelated across frequency. However, we
argue that the scenario where ρf = 0 is unlikely to occur in
practice for the reasons highlighted in Section I. This intuition
is also confirmed in the correlation analysis of real data in
Section VI-C. Turning our focus to the performance bounds,
we notice that the SVD-direct method achieves the CRB if a
high target correlation is present.

Varying number of frames L: We now evaluate the different
approaches when estimating the covariance matrices with vary-
ing numbers of time frames L (Figure 9). The narrowband and
wideband approaches exhibit similar performance for scenarios
with low target and noise correlation (Figures 9a and 9b). The
benchmark method is slightly more accurate when only a few
frames are available (L < 50), whereas the proposed algorithm
outperforms CW for a higher number of frames. Because
wideband spectral-spatial covariance matrices are considerably
larger than narrowband spatial covariance matrices, accurate
estimation of the former requires more realizations. When the
target is highly correlated (Figures 9c and 9d), the wideband
method consistently matches or outperforms the narrowband
method.
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Fig. 9. Algorithm performance for non-uniform target and noise powers, under
varying number of time frames L, with different levels of target correlation ρf .
The top row ((a) and (b)) represents less correlated target (ρf = 0.25), while
the bottom row ((c) and (d)) shows highly correlated target (ρf = 0.75). The
left column corresponds to RMSE, and the right column shows the Hermitian
angle.

Varying SNR: Lastly, in Figure 10, we examine the perfor-
mance for various SNR levels. For low target and noise spectral
correlation (Figures 10a and 10b), the two algorithms perform
comparably, with the wideband method being marginally
less accurate for higher SNRs. By contrast, when the target
correlation is high, as in Figures 10c and 10d, the two
approaches perform similarly for less noisy scenarios, but
the wideband method has a considerably lower error for lower
SNRs, with a reduction of up to 11 dB RMSE and 0.12 rad
Hermitian angle at −10 dB SNR. This experiment concludes
the evaluations on synthetic data.

C. Correlation coefficients of measured data

Before testing the RTF estimation algorithms on real data, it
is useful to examine the correlation coefficients of measured
adult speech and white Gaussian noise, and relate them to
the simulated coefficients from Sections VI-A and VI-B. To
analyze the distribution of the spectral correlation coefficients,
we first select a segment of length T from the time-domain
signal of interest. After transforming this segment to the STFT
domain, we estimate its spectral covariance matrix and spectral
correlation coefficients, as detailed below.

The measured speech signal consists of anechoic male and
female speech recordings from the Harvard Word List5, sampled
at fs = 16 kHz. The recordings last approximately 5 minutes.
For each of the 50 Monte Carlo iterations, we randomly
select a segment of length T = 0.35 s from either of the two
recordings. Silent segments are discarded. The STFT analysis
is performed with window length K2 = 1024, corresponding to
K+ = (K2/2)+1 = 513 positive frequencies. We use a square-
root Hann window function and a 75% overlap between frames,
such that the block-shift equals R = 256 samples. Therefore,

5“Speech Intelligibility CD” from Neil Thompson Shade.
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Fig. 10. Algorithm performance for non-uniform target and noise powers
under varying SNR, with different levels of target correlation ρf . The top row
((a) and (b)) represents less correlated target (ρf = 0.25), while the bottom
row ((c) and (d)) shows highly correlated target (ρf = 0.75). The left column
corresponds to RMSE, and the right column shows the Hermitian angle.

the number of STFT frames available for estimating the spectral
covariance matrices is L ≈ (Tfs − K2 + R)/R ≈ 20. The
number of frames L is thus small compared to the number
of positive frequency bins K+, complicating the estimation
of the spectral covariance matrices. To focus the analysis
on relevant frequency bands, we only consider frequency
components between 0.08 kHz to 2.0 kHz, reducing the number
of frequency bins from K+ = 513 to K ≈ 124. The remaining
bins are ignored in the analysis.

The spectral covariance matrix R̂ ∈ CK×K is estimated from
phase-adjusted STFT data, as described in Equation (11), to
account for the phase shifts caused by overlapping frames. The
magnitudes of the correlation coefficients for the off-diagonal
elements are then obtained as:

ρ̂f,k1k2
=
∣∣∣[R̂]k1k2

/
√
σ̂2
k1k1

σ̂2
k2k2

∣∣∣, (36)

where k1, k2 = 1, . . . ,K, k1 ̸= k2, and σ̂2
k1k1

= [R̂]k1k1 .
Finally, we count the number of bins within each interval
of the histogram and average the percentages across Monte
Carlo realizations (Figure 11). As expected, the speech data
(Figure 11a) exhibits significantly higher spectral correlation
than the white noise data (Figure 11b). Approximately 20%
of the speech data shows correlations above 0.6, while this
value is nearly zero for the white noise data. Surprisingly, the
white noise data displays spectral correlations exceeding 0.2
in over 40% of the cases, which we hypothesize is due to
spectral leakage caused by the finite-length windowing effect.
Given that the proposed RTF estimation method performs better
for highly correlated target signals, the large number of low-
correlation bins suggests that RTF estimation may improve by
applying the proposed algorithm to the highly correlated bins
only. The optimal design of such a method should be explored
in future research.
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Fig. 11. Empirical distribution of spectral correlation coefficients for (a) male
speech and (b) white noise signals. Speech has more highly correlated bins
than white noise, a stationary signal.

D. Real-data simulations
The fourth set of experiments tests the RTF estimation
algorithms on real speech data, maintaining the same settings as
in Section VI-C, except where noted. A directional interferer is
introduced by randomly sampling a real-world recording from
the ESC-50 database [41]. Within the ESC-50 database, we
sample from three selected categories that contain approx-
imately stationary sounds: engine noise, washing machine
noise, and vacuum cleaner noise. The default SNR for the
interferer is set to 0 dB. The target and the interfering signals
are generated by convolution with the RIRs from the database
in [42]. The RIRs were measured with a linear microphone
array with 8 sensors, spaced 8 cm apart, in a room of size of
6 × 6 × 2.4m. The average reverberation time of the room
is RT60 = 0.61 s. All RIRs are cut after 0.61 s to reduce the
length of the convolved signals while preserving most of the
reverberation power. Unless otherwise specified, only the first
M = 4 microphones of the array are used. The target and
interfering sources are placed 1m away from the microphones,
at angles of 45◦ and 60◦, respectively. Therefore, the target and
interfering sources are spatially close to each other but exhibit
different spectral properties. The noise covariance matrix R̂v

is estimated from a separate realization of the noise-only signal
whose total duration is Tn = 2 s. A distinct noise realization is
used for each Monte Carlo iteration. The covariance matrices
R̂x and R̂v are estimated from phase-adjusted STFT data, as
described in Equation (11), to account for the phase shifts
caused by overlapping frames. To gauge the improvements
brought by the phase-corrected covariance estimator, we also
depict the accuracy of the wideband SVD-direct algorithm
when utilizing the sample covariance estimator of Equation (9).
Errors based on the sample covariance estimate with the original
phase values are indicated by appending “original phase” to
the RTF estimator name. When calculating the errors on the
RTF estimates, we only retain the frequency bands for which
the average power of the target signal at the microphones is
no more than 35 dB lower than that of the loudest frequency
band. Notice that the experiments include all bands in the
specified frequency and SNR region. That means even those
bands without correlation across frequency are included.

The wideband and narrowband algorithms are assessed
based on the RMSE and the Hermitian angle metrics across
different conditions. We analyze the algorithms for different
variations in the segment length T (Figures 12a and 12f),
which determines the number of frames L available for
estimating the covariance matrices, the SNR (Figures 12b
and 12g), the FFT size K2 (Figures 12c and 12h), hence K,
the number of microphones M (Figures 12d and 12i), and the
directional interferer angular position (Figures 12e and 12j).
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Fig. 12. Performance of the algorithms for real speech, under (a-f) varying segment length T , (b-g) varying SNR, (c-h) varying FFT size, (d-i) varying number
of microphones, and (e-j) varying angular distance between target and interferer. The error metrics are the RMSE (top) and the Hermitian angle (bottom).

The proposed phase-adjusted wideband algorithm outperforms
the narrowband benchmark in all experiments of Figure 12.
The performance gap between wideband and narrowband
algorithms remains largely unchanged under varying conditions.
Notice that phase correction would not affect the performance
of the narrowband algorithm, CW, which does not rely on
inter-frequency correlations. On the other hand, the wideband
algorithm SVD-direct benefits significantly from incorporating
phase-adjusted covariance matrices, especially in scenarios with
a higher number of available time frames L or microphones
M , or when the SNR is high. The impact of phase correction
appears to diminish under conditions where the covariance
estimates are compromised due to a low number of time frames
or a low SNR. In Figures 12d and 12i, we observe a decline in
the performance of all algorithms as the number of microphones
increases. This is likely because, as M increases linearly, the
number of elements in the covariance matrices (M × M )
increases quadratically. Consequently, with the data length
remaining constant, the quality of the estimated covariance
matrices worsens. Figures 12e and 12j illustrate the RTF
estimation errors when the target is positioned at 45◦ and the
interferer is placed at various angles within the 0◦ to 90◦ range.
Although the wideband method outperforms the narrowband
approach, the performance gap is greatest when the target
and interferer are separated by a narrow angle, diminishing as
the angular distance increases. Exploiting spectral correlations
proves to be most effective when there is significant overlap
in the spatial correlations of the target and interferer.

E. Beamforming

Knowledge of the RTF of a target speaker allows us to virtually
steer a beamformer towards them and enhance the quality and
the intelligibility of speech. In this section, we evaluate the
performance of an MVDR beamformer that uses the estimated
RTFs to enhance a target signal, to get an impression of the
performance improvement by using the proposed RTF estimator.
The output of the beamformer is an estimate of the target signal

and its early reflections at the reference microphone, given by:

d̂1,k(l) = wH
k xk(l), l = 1, . . . , L and k = 1, . . . ,K, (37)

where wk ∈ CM are the beamforming weights, given by

wk =
R̂−1

n (k)âk

âH
k R̂−1

n (k)âk

, k = 1, . . . ,K. (38)

In Figure 13, we compare the output of the MVDR beamformer
at various SNRs, using four different RTF estimates âk:
SVD-direct (wideband), CW (narrowband), the true RTF ak,
and the unprocessed one at the reference microphone, i.e.,
âk = [1, 0, . . . , 0]T . The output d̂1,k(l) is evaluated using the
short-time intelligibility index (STOI), the log-likelihood-ratio
(llr) spectral distance, and the frequency-weighted segmental
SNR (fwSNRseg) [43], [44]. The same settings as in Sec-
tions VI-C and VI-D are used, except for the segment length
T , which is extended to T = 1 s. As expected, the MVDR
beamformer performs best when using the true RTF, while
using the noisy signal at the reference microphone results in
the worst scores across all metrics. The proposed algorithm
generally outperforms CW according to all metrics in most
conditions, except at very low SNRs.

F. Computational complexity
Let us now compare the computational complexity of SVD-
direct with the benchmark algorithm, CW. The cost of es-
timating the noisy covariance matrix is neglected as it is
not considered part of the algorithms. While CW applies K
generalized eigendecompositions on spatial M×M covariance
matrices, SVD-direct requires an initial generalized eigende-
composition on two matrices of size KM ×KM , followed by
K SVDs on matrices of size M ×KM . Consequently, SVD-
direct is slower than CW, primarily because the computational
cost of eigenvalue decomposition increases cubically with the
matrix size. Keeping the same settings as in the real-data
experiments of Section VI-D, our measurements reveal that
CW is approximately 200 times faster than SVD-direct using
our non-optimized Python implementation on a MacBook Pro
16 inches (M1 Max chip).
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Fig. 13. Evaluation of MVDR beamformer outputs using different RTF
estimates, under varying SNR. Different subfigures correspond to different
metrics: fwSNRseg (a), LLR (b), and STOI (c).

VII. ADDITIONAL DISCUSSION

Our experiments yielded valuable insights into the performance
of the narrowband CW and the wideband SVD-direct methods
for RTF estimation, comparing them with the conditional and
the unconditional performance bounds. Let us now examine
the key findings.

Our investigation reveals a consistent trend favoring the
wideband approach in scenarios with higher target correlation.
Unlike the narrowband method, which remains unaffected
by varying noise spectral correlation, the wideband approach
also demonstrates occasional performance improvements when
dealing with highly correlated noises.

The CRB analysis reveals a fascinating insight: when the
noise spectral correlation υf is high, significant potential exists
for further improvements in wideband channel estimation.
While this discovery pertains to channel estimation, it points
to potential applications across various parameter estimation
tasks. The finding also provides a theoretical foundation for the
observed empirical evidence in certain parametric and machine-
learning approaches. Notably, some DNNs that operate on the
entire time-frequency representation outperform narrowband
alternatives in various speech enhancement tasks [25], [28].
It also offers a partial explanation for the intelligibility gains
experienced by humans when detecting speech affected by
harmonic noises [16].

The correlation analysis of Section VI-C, together with the
real-speech experiments in Sections VI-D and VI-E, confirm
that natural speech possesses spectral correlations that can be
exploited by the SVD-direct algorithm, leading to improved
RTF estimation and beamforming performance in the scenarios
under analysis. However, it is worth noting that the wideband
algorithm may not surpass narrowband algorithms in certain
settings, such as when dealing with highly non-stationary noise
sources. This limitation arises from the inherent challenge of
estimating large spectral-spatial covariance matrices from a

limited number of frames. For instance, typical speech has
about 10-20 different sounds per second [45, Chapter 15.3].
This dynamic nature makes the estimation of spectral patterns
more demanding compared to spatial patterns, which depend on
the positions of the speaker and the listener. Improved spectral
correlation estimates may result by modeling the signals under
analysis as realizations of cyclostationary processes, a particular
class of spectrally correlated processes [46].

VIII. CONCLUSION

The uncorrelation of frequency components of a signal is a
ubiquitous assumption that is often not verified in practice due
to STFT processing and the non-stationary nature of signals. In
this paper, we investigated the role of spectral correlations
in spatial processing and proposed a new subspace-based
algorithm for the channel estimation task. Indeed, accurate
knowledge of the acoustic transfer functions between target
speakers and microphones is crucial for spatial filtering in
applications like MVDR beamforming.

Extensive numerical experiments demonstrated the superior
performance of our wideband approach over the maximum-
likelihood narrowband benchmark, yielding gains of more than
10 dB RMSE in scenarios involving spectral correlations and
low SNR. The proposed SVD-direct algorithm also exhibited
competitive performance with real reverberant speech data con-
taminated by directional interferers and spatially uncorrelated
noise. These achievements are obtained without compromising
conceptual interpretability, as the channel estimate can be
computed in closed form with just a few lines of code.

Furthermore, we derived CRBs for wideband channel
estimation, revealing the potential for substantial accuracy
improvements when noise, and to a lesser extent, the target
exhibits high-frequency correlation. This study serves as a
starting point for understanding the impact of spectral corre-
lations on parameter estimation for array processing. Future
endeavors will focus on refining the estimation of spectral-
spatial covariance matrices, conducting more comprehensive
tests on real-world measurements, and analyzing the influence
of spectral correlation in speech enhancement and acoustic
source separation.

APPENDIX A
PROOF OF CONDITIONAL CRB [EQUATION (25)]

Proof. To obtain the Cramér–Rao bound for the unknown
parameters θ, we first calculate the derivatives of the log-
likelihood function with respect to the unknown parameters
to form the Fisher information matrix. Notice that the log-
likelihood is a real-valued function of a complex variable θ.
Thus, by evaluating the gradients using Wirtinger derivatives
[37], we can make use of the following properties.

Lemma 2 Let f : Cp × Cp × Cq × Cq 7→ R be a real scalar
function of four complex variables w,w∗ ∈ Cp and z, z∗ ∈ Cq .
Then
(a) ∇zf = (∇z∗f)∗.
(b) ∇z∇H

wf = (∇z∗ ∇H
w∗f)∗.

Proof.

This article has been accepted for publication in IEEE Transactions on Audio, Speech and Language Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASLPRO.2025.3533371

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



IEEE/ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 14

(a) Follows from the fact the gradient operators are complex
conjugates while f is real.

(b) ∇z∇H
wf = ∇z∇T

w∗f = (∇w∗∇T
z )

T f

= (∇w∗∇H
z∗)T f = (∇z∗ ∇H

w∗f)∗.

For notational convenience, we define L(θ) = ln p(X;θ).
We will begin by evaluating the bottom-right quadrant of
the Fisher information matrix (Equation (20)), defined as
−E

[
∇a∗ ∇H

a∗L(θ)
]
. Expanding the matrix product, the partial

derivative of the log-likelihood L(θ) in Equation (24) with
respect to a∗k is given by

∇a∗
k
L(θ) = − ∇a∗

k

(
L∑

l=1

(x(l)−As(l))HR−1
v v(l)

)
(39)

= ∇a∗
k

 L∑
l=1

KM∑
j=1

s∗j (l)a
H
j R−1

v v(l)

 (40)

=

L∑
l=1

s∗k(l)e
T
kR

−1
v v(l). (41)

The second order derivative evaluates to

∇a∗
k
∇am
L(θ) = −

L∑
l=1

s∗k(l)e
T
kR

−1
v emsm(l). (42)

This leads to

−E
[
∇a∗ ∇H

a∗L(θ)
]
=

L∑
l=1

S(l)HR−1
v S(l), (43)

where we defined S(l) = diag(s(l)). With this, the Fisher
information matrix is given by (cf. Lemma 2) Iθ =
blkdiag(B∗,B), where blkdiag(·) is the operator that con-
structs a block diagonal matrix from the given matrices, and
B =

∑L
l=1 S(l)

HR−1
v S(l). The block-diagonal matrix Iθ can

be inverted block-wise, leading to

I−1
θ = blkdiag((B∗)−1,B−1). (44)

The variance of unbiased estimators of the ATF is, therefore,
bounded by var(âi) ≥ [(B∗)−1]ii, i = 1, . . . ,M.

Transfer functions can be estimated in relation to a reference
sensor r with a function g(·) defined in Equation (22). Choosing
r = 1 as a reference sensor, the Jacobian matrix can be written
as

∇θg =
[
∇ag ∇a∗g

]
=
[
∇ag 0KM×KM

]
, (45)

where the right block of the gradient, ∇a∗g, is null because g(·)
does not depend on a∗. We can further partition the left block of
the gradient in K “fat” matrices ∇ag = [∇T

a1
g, . . . , ∇T

aK
g]T ,

where ∇ak
g ∈ CM×KM , k = 1, . . . ,K. Individual blocks

∇ak
g can be written as0M×(k−1)M

0 0 0 0

0M×(K−k)M

−ak2a−2
k1 a−1

k1 0 . . . 0
−ak3a−2

k1 0 a−1
k1 . . . 0

...
. . .

...
−akMa−2

k1 0 . . . 0 a−1
k1

 ,

(46)

so that ∇ag shows a block-diagonal structure. With this, we
have from Equation (44) and Equation (21)

Rϕ̂ ⪰ (∇θg)I
−1
θ (∇H

θ g) = (∇ag)(B
∗)−1(∇H

a g). (47)

The CRB corresponds to the diagonal elements of the matrix at
the right-hand side of Equation (47), as stated in Equation (25).

APPENDIX B
PROOF OF UNCONDITIONAL CRB [EQUATION (27)]

We first list some derivative rules (e.g. , [35]) for a generic
square matrix X(θ), where the values of X depend on θ.

∇θi ln(X) = tr(X−1 ∇θiX), (48)
∇θi tr(X) = tr(∇θiX), (49)

∇θiX
−1 = −X−1(∇θiX)X−1. (50)

The computation of the unconditional CRB requires the
calculation of first- and second-order derivatives of the log-
likelihood in Equation (26), reproduced here for easy reference:

L(θ) = −L ln |πRx| − L tr (R̂xR
−1
x ). (51)

Proof. The partial derivative of the log-likelihood L(θ) in
Equation (26) with respect to a∗k is given by

∇a∗
k
L(θ) = −L tr (R−1

x Fk)− L tr (R−1
x FkR

−1
x R̂x), (52)

where we introduced

Fk = ∇a∗
k
Rx = ARsE

kk (53)

and Eij is zero everywhere and 1 at entry ij. The first term
on the right-hand side of Equation (52) is obtained directly
from Equation (48). The second term is obtained by using the
derivative of the trace and of the matrix inverse as given by
Equation (49) and Equation (50), respectively, along with the
cyclic property of the trace operator. It is important to note
that the estimate R̂x is independent of the parameter vector a.
The second-order partial derivative of L(θ) writes

∇am
∇a∗

k
L(θ) =

− L ∇am
[tr (R−1

x Fk) + tr (R−1
x FkR

−1
x R̂x)]. (54)

The derivatives of the two terms can be evaluated separately.
For the first term in Equation (54), we have

∇am tr (R−1
x Fk) = tr (∇amR

−1
x Fk) =

= tr (−R−1
x GmR−1

x Fk +R−1
x Hmk), (55)

which is obtained by applying the product rule together with
Equation (49) and Equation (50). Here, Gm and Hmk are
defined as

Gm = ∇amRx = EmmRsA
H , (56)

Hmk = ∇amFk = ∇am ∇a∗
k
Rx = EmmRsE

kk. (57)

The second term in Equation (54) is given by

∇am
tr (R−1

x FkR
−1
x R̂x) = tr ∇am

(R−1
x R̂xR

−1
x Fk) =

tr
[
R−1

x R̂xR
−1
x (GmR−1

x Fk −Hmk + FkR
−1
x Gm)

]
, (58)
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which was again obtained by utilizing the product rule,
Equation (49), Equation (50), and rearranging the resulting
terms. By combining Equation (55) and Equation (58), the
negative expected second-order partial derivative follows as

− E
[
∇am

∇a∗
k
L(θ)

]
=

LE
{
tr
[
−R−1

x (GmR−1
x Fk −Hmk)

]
+

+ tr
[
R−1

x R̂xR
−1
x (GmR−1

x Fk −Hmk + FkR
−1
x Gm)

]}
= L tr

(
R−1

x FkR
−1
x Gm

)
. (59)

To collect the expected values of the second-order partial
derivative, we define a matrix C1 such that [C1]mk =
−E

[
∇am

∇a∗
k
L(θ)

]
. The elements of the bottom left block

of the Fisher information matrix can be similarly obtained as
[C2]mk = −E[∇am

∇ak
L(θ)] = L tr

(
R−1

x GkR
−1
x Gm

)
, and

the elements −E
[
∇a∗

m
∇a∗

k
L(θ)

]
of the top right block follow

as CH
2 from Lemma 2. The inverse of the Fisher information

matrix for the unconditional case can then be represented by:

I−1
θ =

[
C∗

1 CH
2

C2 C1

]−1

=

[
C ∗
∗ ∗

]
, (60)

where C ∈ CKM×KM is obtained by selecting the first KM
rows and columns from I−1

θ . To derive the bound for estimating
the relative transfer function, we employ the mapping g(·) as
defined in Equation (22). Using Equation (21), the inverse
Fisher information matrix is left- and right-multiplied by ∇θg,
which is defined in Equation (45), resulting in the final form
of the bound given by Equation (27).
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