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Abstract—Acoustic-scene-related parameters such as relative
transfer functions (RTFs) and power spectral densities (PSDs)
of the target source, late reverberation and ambient noise
are essential for microphone array signal processing and are
challenging to estimate. Existing methods typically only estimate
a subset of the parameters by assuming the other parameters
are known. This can lead to unmatched scenarios and reduced
estimation performance on the parameters of interest. Moreover,
many methods process time frames independently, despite they
share common information such as the same RTF. In this work,
we consider a noisy scenario by modelling the noise component
as a spatially homogeneous sound field with a time-invariant
spatial coherence matrix and time-varying PSD. We first modify
an existing alternating least squares (ALS) method to obtain more
accurate estimates using a single time frame. Then, we extend
the method to use multiple time frames that share the same RTF.
Furthermore, we propose more robust constraints on the PSDs to
avoid large estimation errors. We compare our proposed methods
to several reference methods, among which the state-of-the-art
simultaneously confirmatory factor analysis (SCFA) method, a
recently developed joint maximum likelihood estimation (JMLE)
method and an existing ALS-based method. The experimen-
tal results in terms of estimation accuracy, noise reduction
performance, predicted speech quality, and predicted speech
intelligibility demonstrate that our proposed ALS-based methods
achieve similar performance compared to the state-of-the-art
SCFA method. Both the proposed ALS-based methods and the
SCFA method outperform the existing ALS-based method in all
scenarios and outperform the JMLE method particularly in low
SNR scenarios. Moreover, in terms of computational complexity,
our proposed methods are the least complex of all reference
methods. This is confirmed by the measured processing time,
which is significantly lower than for SCFA.

Index Terms—Dereverberation, noise reduction, microphone
array signal processing, RTF estimation, PSD estimation.

I. INTRODUCTION

Hands-free speech communication applications like mo-
bile phones and hearing aids are commonly used nowadays.
Equipped with microphone arrays, these devices can record
and analyze the speech signal for various applications. Un-
avoidably, the microphone signals are corrupted by rever-
beration and ambient noise, which can degrade the speech
quality and intelligibility [1], [2]. Hence, techniques like
spatial filtering are used to extract the target signal from
the noisy microphone signals. Typically, these spatial filters
depend on acoustic-scene-related parameters such as relative
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transfer functions (RTFs) and power spectral densities (PSDs)
of the source, the late reverberation and the ambient noise. In
practice, these parameters are typically unknown. Therefore,
an essential problem with hands-free speech communication
applications is to estimate the aforementioned parameters.
Note that there are non-parametric techniques such as blind
beamforming or blind source separation [3], [4] that can
extract the target signal without estimating the parameters.
However, in this work we only focus on parametric beam-
formers where the estimated parameters can be used as a prior
information on the acoustic scene.

Due to the non-stationarity of the speech signal, the PSDs
of the target source and the late reverberation are time-varying.
The PSDs of the ambient noise can be time-varying as well,
depending on the working environment of the microphone
arrays. The RTFs can change over time as well depending
on whether the source is moving relative to the array. The
facts that these parameters can be time-varying and corruptions
caused by reverberation and ambient noise are present, make
the estimation of these parameters rather challenging.

In recent years, many methods have been proposed to
estimate these parameters, see e.g., [S]-[14]. Many of these
methods only estimate a subset of the parameters by making
some strict assumptions about the acoustic scenarios and the
knowledge of the remaining parameters. For example, in [5],
[9], [12], the RTFs of the target source are assumed to be
known such that the speech PSD, late reverberation PSD and
noise PSD can be estimated. In [6], the PSD of the late
reverberation is assumed to be known and the RTF of the
target source is estimated. In [7], the RTFs and the PSDs
of all sources and the noise covariance matrix are estimated.
However, it is assumed that the late reverberation component is
stationary and only a single source is active per time frequency
tile. In [8], the noise covariance matrix is assumed known
and the late reverberation PSD is estimated. In [13], [14], the
noiseless scenario is assumed, neglecting the estimation of the
ambient noise PSD.

From the above overview, we see that existing methods
for parameter estimation from the acoustic scene all assume
a subset of parameters to be known. However, erroneously
assuming a subset of the parameters to be known can lead
to unmatched scenarios, and thus to reduced noise reduction
performance. This emphasizes the importance of accurate joint
parameter estimation. A second important point is the fact
that, apart from a few exceptions, e.g., [11], [14], many of
these methods process the time frames independently, despite
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the fact that they may share some common information. For
instance, the RTFs corresponding to some adjacent time frames
are the same if the sound source is static during these time
frames. In such cases, we could use these time frames jointly
to obtain better estimates of the RTFs [11], [14].

The joint estimation of parameters using multiple time
frames is realized in [11] in a reverberant and noisy envi-
ronment, using the simultaneous confirmatory factor analysis
(SCFA) method. As expected, SCFA has much better esti-
mation performance compared to methods using each time
frame independently, especially for the RTF estimation [11].
Nevertheless, SCFA has a rather high computational cost.
Therefore, we recently proposed some alternative methods that
can achieve a nearly similar performance as SCFA, but at a
much lower complexity [14].

In [14], we considered a single reverberant source scenario
and proposed a joint maximum likelihood estimator (JMLE)
for the parameters of interest. In the current work, we extend
the signal model from [14] to the noisy case. Specifically, we
model the noise component as a spatially homogeneous sound
field characterized by a time-invariant spatial coherence matrix
with a time-varying PSD. We can assume the spatial coherence
matrix is known, as assumed in [9]. Further, we consider
the use of multiple time frames to jointly form a segment.
The RTF is considered constant across the segment, while the
PSDs of the target’s early reflections, the PSDs of the late
reverberation and the ambient noise PSD are allowed to change
from frame-to-frame. The focus herein is to jointly estimate
the source’s RTF, and the PSDs of the early reflections, the
late reverberation and the ambient noise at low complexity.
We will use the least squares (LS) error as a cost function,
i.e., minimizing the Frobenious norm of model error matrices.
Note that the LS cost function has been considered in [10] as
well to estimate these parameters and the LS minimization was
solved by an alternating least squares (ALS) method. However,
we will show in this work that the ALS based method from
[10] can suffer from a parameter identifiability issue and thus
needs to be modified to obtain more accurate estimates. Note
also that the ALS method from [10] uses each time frame
separately. Hence, we will extend the modified ALS method
such that it uses multiple time frames jointly to improve the
estimation performance. In addition, we propose constraints on
the estimated PSDs that are more robust than the ones used in
[10] to avoid large estimation errors. Note that minimizing the
least squares cost function for multiple time frames jointly can
be seen as a special case of the joint diagonalization problems
modeled in [15]-[17], except that the problem proposed in our
work has additional constraints on some of the parameters
and the single target source is disturbed by both the late
reverberation and the ambient noise.

The remaining parts of the paper are structured as follows.
In Section II, we introduce the notation used in this paper,
present the signal model and formulate the problem discussed
in this paper. In Section III, we will present the existing
ALS method, propose a modified ALS method and extend
it to a method using multiple time frames. After that, we
will compare our proposed methods to some state-of-the-art
reference methods in various simulated acoustic experiments
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in Section IV. Finally, we will draw the conclusions in
Section V.

II. PRELIMINARIES

A. Notation

In this paper, we use lower-case letters to denote scalars,
bold-face lower-case letters for vectors and bold-face upper-
case letters for matrices. Matrix notation with subscripts using
two lower-case letters (e.g. P)’i,j) denotes the element of
the matrix. Matrix notation with superscripts 7, *, H denotes
taking the transpose, the conjugate and the conjugate transpose
of the matrix, respectively. R (z) and < (x) represent the real
part and the imaginary part of a complex-valued variable z,
respectively. Further, E[-] refers to the expectation operator,
tr (-) refers to taking the trace of a matrix, and if not further
specified, |-| denotes taking the determinant of a matrix.
Finally, diagla;,---,ap] denotes a diagonal matrix with
diagonal elements ai,--- ,ap and [-|| denotes taking the
Frobenius norm of a matrix.

B. Signal model

We consider a reverberant and noisy environment, in which
a single acoustic point source is recorded by an array of
M microphones with an arbitrary geometric structure. The
microphone signal received at the m;; microphone in the
short-time Fourier transform (STFT) domain is given by

Ym (l7 k) = €m (l; k) + Tm (la k) + v, (ly k)7 (1)

where [ is the time-frame index and k is the frequency bin
index, e,, (I, k) is the sum of the direct sound and the early
reflections, 7, (I, k) is the sum of all the late reflections in time
frame [ and frequency bin k, and v,,, (I, k) contains the ambient
noise and microphone self-noise. Since the direct components
and early reflections are beneficial for speech intelligibility
[18], the combination of these components forms our target
signal,

€m (la k) = am (l7 k) S (17 k)a 2

where s (I, k) contains the direct and early speech component
recorded by the reference microphone and a,, (I, k) is the rela-
tive transfer function (RTF) between the reference microphone
and the my;, microphone. By selecting the first microphone as
the reference microphone, we have the prior information that
a1 = 1. Note that, we use the multiplicative transfer function
(MTF) approximation in Eq. (2) for ease of analyzing, instead
of the convolutive transfer function (CTF) approximation [19],
[20]. Stacking the M microphone STFT coefficients into a
column vector, we have

y(lLk)y=a(l,k)s(,k)+r (k) +v (k) eC" (3

where y (I,k) = [y1 (Ik), - ,yn (I,k)]" and the other
vectors are defined in the same way.
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C. Cross Power Spectral Density Matrices

By processing in short time frames, we can assume the
three components in Eq. (3) to be stationary and mutually
uncorrelated within a time frame. The PSD matrix of the noisy
microphone recordings can therefore be expressed as

Py (IL,k) =E [y (I,k)y" (1,k)]

4
=Po(l,k) +P. (1,k) + Py, (I,k) € CM*M @

where P, is given by
P, (lak) = ¢s (lak)a(lvk)aH (lak)7 &)

and ¢ (I,k)=E [|s (l,k)\Q] is the PSD of the target source
at the reference microphone with |-| taking the absolute
value. However, notice that across frames, s and r might be
correlated.

The CPSD matrix of the late reverberation component is
commonly modelled as [5], [21]

P, (lak) = ¢7 (l7k)r(k)7 (6)

which is a spatially homogeneous and isotropic sound field
with a time varying PSD ¢, (I,k). The spatial coherence
matrix T (k) is time-invariant. Hence, T' (k) can be estimated
in advance using the information on the microphone array
geometry [22]-[24]. We assume a spherically isotropic noise
field [25] and model the {4, j}-th element of T' (k) as

27Tf5kdi7j>

T, (k) = sinc ( A (N

where sinc (z) = S2Z ;. is the inter-distance between
microphones ¢ and j, fs is the sampling frequency, ¢ denotes
the speed of sound and K is the number of frequency bins.

Lastly, we assume that the residual noise component has
a similar CPSD matrix formulation as the late reverberation,
ie.,

Py (l7k) = ¢y (lvk)‘:[’(k)7 (3

where W (k) is the known spatial coherence matrix and
¢y (I, k) is unknown PSD. We assume that W (k) is non-
singular and linearly independent with I" (k) (i.e. ¥ (k) is not
a scaled version of I'(k)). Note that when considering the
microphone self noise only, we have ¥ (k) = L

D. Problem Formulation

Based on the assumptions made in the previous subsection
and Egs. (5), (6) and (8), we can rewrite the noisy CPSD
matrix for each time frame [ as

Py ()=¢: (Da(Da™ (1) + ¢, ()T + ¢, (1) ©. ©

Note that we omit the frequency bin index %k in Eq. (9) and
hereafter for legibility since the signals will be processed for
each k independently. By making the RTF vector a dependent
on the time-frame index [, we implicitly assume that the
relative source position or room acoustics can change from
time frame to time frame. However, we consider in this work
a semi-static source scenario by assuming the RTF a does
not change for N (a finite number) time frames (/N ranges
from 1 to 8 in our experiments, corresponding to a duration
of approximately 0.5 s to 5 s). We denote the set of N time
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Figure 1: Visualisation of the definition of time segment (TS),
time frames (TF) and sub frames (SF).

frames sharing a single RTF by a time segment with index [3.
The noisy CPSD matrix then becomes

Py ()=¢s (Na(B)a™ (8) + ¢, (DT + ¢, ()T,

with g =[] + 1.

Further, we define sub frames indexed by t,, where T
overlapping sub frames form a time frame. See Figure 1 for
a visual interpretation of time segment, time frame and sub
frame. Since the noisy signal is assumed to be stationary
within a time frame, we can estimate the CPSD matrix per
time frame ¢ based on a sampled covariance matrix using the
sub-time frames, that is,

(10)

1Ty

>

to=14+(—1)Tss

- 1

Py(l) =7 y )y, an

where y (¢s) denotes the STFT coefficients vector.

Accurate estimation of the parameters from the signal model
in Eq. (10) is very important for speech enhancement and
intelligibility improvement algorithms. However, this is also
very challenging when the source is only stationary for a short
time and microphone and source positions are time varying.
The main goal of this paper therefore is to estimate the RTF
vector, the PSD of the source, the PSD of the late reverberation
and the PSD of self-noise simultaneously using N sequentially
estimated CPSD matrices 15y (1) for one time segment S, i.e.,
for N time frames, while the source is only stationary within
a time frame and the RTF changes from segment-to-segment.

III. ALS-BASED JOINT ESTIMATION

To jointly estimate the parameters of interest, we consider
the use of alternating least squares (ALS) based methods.
Note that a two-step ALS method has been proposed before
in this context [10]. In Section III-A, we will first introduce
the method proposed in [10]. Then in Section III-B we will
propose a modified version of the ALS method based on two
improvements over the original method to overcome parameter
identifiability issues and potential numerical issues due to
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matrix singularities. Note that in [10] each time frame is
utilized separately. However, if we assume the CPSD matrices
for multiple time frames in a single time segment share the
same RTF vector, we can use these time frames jointly to
estimate RTF a with improved accuracy. Therefore, we will
extend the modified ALS method to the case using the PSD
matrices for multiple time frames in Section III-C.

A. ALS for a single time frame

In [10], for each single time frame, the estimates of the RTF
vector a and the PSD vector ¢ = [¢s, ¢, ¢U]T are obtained
by minimizing the Frobenius norm of a model mismatch error
matrix, i.e.,

2
argmlnHP — peaall _¢Wf_¢vli,HF’ (12)
where A means the estimated A. Note that the cost function
in Eq. (12) is non-convex. To solve Eq. (12), a two-step ALS
method is used by assuming that for either a or ¢, an estimate
is given and then estimating the other parameter vector.

More specifically, by assuming the RTF vector a is known
or already estimated, the estimate of ¢ can be obtained by
solving

argfnnHP — .88 — ¢7f—¢v\i:”i (13)
which has the following closed form solution
¢ =@.'b, (14)
where
(afa)®  afta afdba
o, — | af'la tr{f‘Hf‘} {f‘ \il} . (15
afda w{fHe} w{¥¥}
and N
al'P,a
wforp,) | 16

{\IIHPy}

When assuming the PSD vector gf) is already estimated, the

RTF vector a can be estimated by minimizing the cost function

with respect to a, that is

. . a2

arg min HPy — deaall — G T — ¢>U\IIH A

a F

which also has a closed form solutiorl [26] given by Ehe sealed

principal eigenvector of the matrix Px = Py, — ¢, I' — ¢, ¥
which is

A

a= -~V

S

; (18)

where A\ and v are the principal eigenvalue and eigenvector of
P. The two steps are performed iteratively.

For the first step, the method in [10] finds an initial estimate
of the RTF vector a by taking a random value or using a coarse
estimate of the direction of arrival of the target source. For
the second step, the PSD vector ¢ is estimated via Eq. (14)
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with @, and b calculated using the initial estimate a. Using
the estimate of ¢, matrix f’x is calculated in the second step
and the RTF vector a can be estimated again via Eq. (18).
For the next iterations, the two steps are repeated and the
estimates of a and ¢ are updated in an alternating fashion until
a given convergence criterion is achieved or a certain number
of iterations I are executed. Note that since each step reduces
the cost function value, this method can converge to a local
minimum even though the global minimum is not guaranteed.
The ALS method is summarized in Algorithm 1.

Since PSDs should be positive by definition, all the esti-
mated PSDs need to be lower bounded. In [10], the estimates
of the PSDs are updated in the following way:

{¢s7 ‘b'ya (;51,} = max ({¢Sv ¢77 ¢u}a

tr (f’y>

€, 19)

and

{¢37¢77¢v} = min {¢Sa¢’77¢’u}a M s (20)
where ¢ is the machine precision.
Algorithm 1: ALS method
Input: Py, T, W.init.a, I
Output: a, ¢
1 for all k,1 do
2 for iter=1:1 do
3 Compute ®, using Eq. (15) and b using
Eq. (16).
4 Estimate ¢ using Eq. (14).
Constrain the estimates of PSDs using Eq. (19)
and Eq. (20).
6 Calculate P, = P, — qgvf‘ — 6,
7 Take EVD of Py to find its principal
eigenvalue and eigenvector.
8 Estimate a using Eq. (18).
9 for next time frame: use a = a/a; as the initial
estimate.

B. Modified-ALS for a single time frame

An important condition for parameter estimation is the fact
that the estimation problem itself needs to be identifiable [27].
Specifically, in the problem of jointly estimating the RTF
vector a and the PSDs, the following condition should be
satisfied for any two sets of parameters {a, ¢s, ¢, ¢, } and

{57 (557 Q_s’ya ng}:
¢saaH + o T + ¢, ¥ = d_)sﬁﬁH + d_)’y]-_‘ + Q;?;‘I'

- < - 21

¢s = ¢ps,a= av(bw = ¢77¢v = ¢,
In the ALS method [10], however Eq. (21) does not hold. To
see this, let ¢, = 4¢, and a = 2, we have ¢,aall = p,aa’

but ¢ # ¢ and a # a. Therefore, any proper scaling of a
and ¢, can be a solution as well. To solve this issue, we use
the prior information that a; = 1. In the final iteration, after



This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech and Language Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2023.3306713

estimating a using Eq. (18), we add a normalization step for
both a and ¢ using the constant ¢ = a;:

a< 22)

Q|

and
bs = sl (23)

Notice also that in each iteration of the ALS method, if
the estimated ¢ has an unusually small value (e.g. eps), the
elements of the estimate of a in Eq. (18) will have rather large
values. This will lead to large values of the first column and
the first row of the matrix ®, in Eq. (15), which means ®,
is close to being singular or badly scaled. To solve this issue,
we can constrain the norm of the estimate of the scaled RTF
vector to 1 by simply using the principal eigenvector instead
of the scaled one in Eq. (18), i.e. & = v. Note that, estimating
the scaled a and ¢, is allowable because we will normalize
them using Eqgs. (22) and (23) eventually in the last step.

The modified alternating least squares (MALS) method aims
at minimizing the following cost function

- N ~ 112

arg min HP — $.aal — o1 — qb\IlH 24
ERRRRS F

where 4 = —2_ and ¢, = ¢sa'’a. Since ¢,aa = p aa”,

the solution to Iéiq. (24) will also be the solution to Eq. (12).
Once the estimates a and ¢, are obtained, the estimates of the
RTF vector and the PSD of the source are given by

ac 2 (25)
ai
and
d)s — ¢s|d1|2- (26)

Similarly as in [10] and as described in Section III-A,
The optimization problem in Eq. (24) can be solved in an
alternating fashion. Assuming a is already available (from
{¢sa¢77¢v} is

a previous iteration or initialization), qNb =
estimated by the least squares estimate

27)

where

I
(<233

Qv

=~

o o
g =

= Qv
= -
Tox
L

\ N~

and

(29)

When an estimate of ¢ is known from the previous iteration,
we calculate the matrix Py = P qS,YI‘ d)v and obtain
the estimate of a by

<>283

:V’

(30)
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where v is the principal eigenvector of P. After a sufficient
number of iterations, a and ¢ are obtained using Eq. (25) and
Eq. (26).

The MALS method is summarized in Algorithm 2.

Algorithm 2: MALS method
Input: Py, f‘,\il,init.éi, I
Output: a, ¢

1 for all k,1 do

2 for iter=1:1 do

3 Compute @5 using Eq. (28) and b using
Eq. (29).

4 Estimate ng using Eq 27).

5 Calculate Px = P —AT — d)v

6 Take EVD of Py to find its prlnc:lpal
eigenvector.

7 Estimate a using Eq. (30).

8 | Estimate a and ¢, using Eq. (25) and Eq. (26).

C. ALS for multiple time frames

In the previous subsections, the joint estimation of the RTF
vector a and the PSD vector ¢ is performed for a single time
frame based on the ALS approach. However, in many cases,
a can be assumed to be constant across multiple frames in
a time segment. With this prior information, we consider in
this subsection the joint estimation of a, and the PSD vector

= [p0+B-DN, eV

frames in a segment, where ¢ (I) = [¢ps (1), P (1), by "
fori=1+(8—1)N,---,8N.

The alternating least squares method using multiple time
frames jointly (JALS) aims at minimizing the sum of the
Frobenius norms of the model mismatch error matrices for
all time frames [ that fall in the same segment S, i.e.,

using all time-

BN
agmin " [Py ()~ 0 (aa" — 6, )T 6. () @ .
a1 (B—1)N F

(31)
Like the MALS method, we reparameterize a and ¢(l) for

I =1+ (B-1)N,-+ BN by a = —2— and ¢,() =

#s(1)a’a, which gives us the following cost function

BN
agmin > [Py ) - aa” — 6, ()P -6, () E|
8¢  =14+(6-1)N

(32)
To solve Eq. (32), we also use a two-step ALS method by
either assuming a is given and estimating ¢ or assuming ¢ is
estimated and estimating a.
When an estimate of a is already given, the minimization
with respect to @ is

BN

argmin > [Py () - @()“H—@()r—%(nﬁ'i
®I=14(B-1N

(33)

)
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which is equivalent to minimizing the cost function for each
time frame [ separately, i.e.
. ~ nn N ~ 12
argmin [Py () = 6. (088" — 6, VP~ 6 ) ¥,
F

b(1),
ViEl+(B—1)N,--- ,BN

- (34)
as ¢ (I) is defined per time frame. For each time frame I,
Eq. (34) has a closed form solution

(35)

where

=
[}
Il
133

Qv
=
<133
—+
]
= Qv
>
T
=

(=
Qv
=y
=
)
(=
\ N~
—
[
(=
)
=
H,—/

and

} . (37)

When an estimate of q; is given, a can be obtained for a
segment § by minimizing

BN A . o 2
argmin > [Py -d.aa" -3 0P -6, 0¥
2 =14(B—1)N F
(38)
The solution for a 1is the principal eigenvector of

BN .

> 0[Py =T -5, F] (See Ap
I=1+(B-1)N
pendix A).

The alternating least squares method using multiple time
frames jointly (JALS) is summarized in Algorithm 3.

Algorithm 3: JALS method

Input: Py, f‘,\i’,init.ﬁ, I
Output: a, ¢
1 for all k, 3 do

2 for iter=1:1 do
3 Calculate @5 using Eq. (36) and b (I) using
Eq. (37)._
4 Estimate ¢ (1) using Eq. (35) for each .
5 Calculate
Px (l) = Py (l) - ¢’Y (l) - ¢1; (l) .
6 Estimate a using the principal eigenvector of
BN 2 .
> o (P (D).
| I=1+(B-1)N
7 | Estimate a and ¢; (1) using Eq. (25) and Eq. (26).

D. Robust PSDs constraints

In [11], it has been shown that linear inequality constraints
on the parameters of interest can be used to improve the
robustness of the estimation. In [10], the PSD of the source,
the PSD of the late reverberation and the PSD of the ambient
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noise are constrained by Egs. (19) and (20). In this section,
we introduce more robust constraints on the PSDs to avoid
large underestimation and overestimation errors.

1) Upper bounds: To avoid large overestimation errors, we
can use upper bounds for the PSDs. For the diagonal elements
of Py, it holds that

Pym,m (l) = Qgs (l) |dm|2+¢'y (l) Fm,m"’¢v (l) ‘Ilm,m- (39)

Since the three additive terms in Eq. (39) are positive, we have

{86 1@l 6 () Tonms b0 () B } <Py, (1),
(40)
for all m. Hence, the upper bound for the PSDs of the target
source is

~

62 (1) < min § Tvon D4 @)

m

am

Similarly, the upper bounds for the PSDs of the late rever-
beration and the ambient noise are

¢ (1) < min {Py”m(”} , (42)
¢v (1) < min {pr 0 } : (43)

Note that f‘m’m = 1 in Eq. (7) and that \i’m’m = 1 when
considering only self-noise and each microphone has the same
self-noise PSD. In that case we thus have

{6,100} <min {By, (D} < t(;)

which is tighter than the bound in Eq. (20) as used in [10].
Hence, by using Egs. (42) and (43), the overestimation errors
for the PSDs of the late reverberation and the ambient noise
are smaller than the errors using Eq. (20), resulting in better
speech intelligibility performance [28], [29].

2) Lower bounds: To avoid large underestimation errors,
we need lower bounds for the PSDs as well. In both [10]
and [11], the prior information was used that the PSDs should
be positive, setting the lower bounds for all PSDs to e. That
is, when obtaining negative incorrect estimates of the PSDs,
these are replaced by the minimum value e. However, this
will lead to very large under estimation errors. Therefore, we
propose the use of tighter lower bounds derived from other
prior information on the PSDs.

For the normalized PSD of the source qgs and the PSD of
the late reverberation ¢., we can see that they have a similar
distribution on the time-frequency domain as illustrated in
Fig. 2.

Based on this, we make the assumption that the ratio
between the normalized PSD of the source and the PSD of
the late reverberation is bounded on both sides, i.e.

(44)

s () _ 1
G < o () < G (45)
or B
Clqs’y (l) § ¢s (l) ’ (46)
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Figure 2: Time frame and frequency distribution of the target
source PSD and the late reverberation PSD.
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Figure 3: Decision flow for updating C7, Cs, q:bs and qASW.

and

Cods (1) < ¢ (1), (47)

for all (I, k) pairs. Note that this assumption is weaker than the
one made in [30], where it is assumed that the ratio between
the sound source PSD and the late reverberation PSD is a
constant. We update C; (1), Cs (1) Using Egs. (46) and (47),
we can constrain the estimated PSDs of the source and the
PSDs of the late reverberation in the following way. We first
initialize C7 and C by an initial value like Cy = Cy =1 for
the first time frame [ = 1. For the [-th time frame, we update
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Cy and C5 while making (Zs (1) and ¢, (1) positive in the way

shown in Fig. 3 and Appendix B, where ¢, (I) is calculated

by
M-—1
2min . Pym,m _ﬁYVn 1,m+1
¢, = min T2 L. ot ) (48)
| = fimsa| ),
and
~ . ~ smin) (2 . M
¢whmm{khm@ %4%} . 49)
m=1

For the PSD of the ambient noise, the lower bounds depend
on the stochastic property of the noise component. We use the
following way to constrain ¢, (I). First, we give the lower
bound C'5 an initial small value €. Then, we update C3 as

B Cs(I=D)+¢ (1) lf(iv (l) >0
G )= { Cs (7 -1) else >0
With C3, we estimate ¢, (1) by
o] ) i, ()>0
Pv (l)_{ Cs(1—1) else ’ D

Note that the above procedure dealing with non-positive esti-
mates of the PSDs might give us values larger than the upper
bounds we derived before in Egs. (41) to (43). Therefore, we
first execute the above procedure and then upper bound all the
estimates.

IV. EXPERIMENTS

In this section, we will evaluate our proposed ALS-based
methods in various scenarios. In addition to the ALS method
proposed in [10], we introduce in Section IV-A two more
reference methods, namely JMLE [14] and SCFA [11]. In
Section IV-B, we present the evaluation metrics for all meth-
ods. We compare the performance of all methods in various
scenarios in Sections IV-C and IV-D.

A. Reference methods

The two reference methods introduced here are both based
on the maximum likelihood (ML) cost function:

N
min " log [Py (1)] + tr (Py (1) Pyt (z)). (52)
=1

1) JMLE: In our recent work [14], we assumed a noiseless
scenario and proposed a joint maximum likelihood estimator
(JMLE) to estimate the RTF of the target source, the PSDs
of the target source and the PSDs of the late reverberation
jointly. The JMLE method performances well and has low
computational complexity. However, the performance of JMLE
is not robust for low SNR scenarios due to the noiseless signal
model assumed in [14], which is

Py (1) = ¢ (a(B)a (8) + ¢ () T. (53)
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2) SCFA: The last reference method we use for compari-
son is the simultaneous confirmatory factor analysis (SCFA)
method [11]. SCFA performs well in reverberant and noisy en-
vironments. However, SCFA comes with a high computational
cost due to solving the following non-convex optimization
problem

N A
argmin 3 log|Py (1) + tr (Py (1) Pyt (z))
s (1),a(B)=!
d)’Y (l) a¢v I (54)
st. Py ()= ¢ (Da(B)a” (B) + ¢, ()T + 6.1,
ai (5): 17¢S (l) > anbw (l) > Oa¢v > 01

where ¢,1I corresponds to the microphone self noise, which
is assumed to be white Gaussian noise. In [11], the above
optimization problem is computed iteratively. At each itera-
tion, the parameters are updated and the cost function value
is reduced by solving a non-linear constrained optimization
problem. The updating procedure is terminated when meeting
a local minimum. Note that due to the non-convexity of the
optimization problem, the number of iterations needed is large.
Hence the computational cost of this method is relatively high.

B. Evaluation metrics

1) Estimation errors: The first evaluation metric is the esti-
mation error of the parameters of interest. For the RTF vector,
we calculate the Hermitian angles between the estimated RTFs
and the true RTFs and average them over different frequency
bins and time segments, that is,

CARNES |a(8.k) ™ a(8,)|
Py acos(wmwm)

Eq = (55)

B(K/2+1)
Note that this metric evaluates the alignment of the estimated
RTF with the ground-truth RTF, but cannot reflect scaling
errors. For all types of PSDs, we use the symmetric log-error
distortion measure [31]

s (5255

% Jloe (5455

B BN
103 X
BN (K/2+1) ’

B=11=1+(f—1)N k=1
with i € {s,~,v}. In the following experiments, we will also
show the detailed PSD estimation performance by using the
overestimating errors (denoted as E(‘;V) and the underestima-
tion errors (denoted as E‘"f) as used in [28]
42))
¢i(1,k)

K/2+1

E; = (56)

K/2+1

B BN
103 >

‘mln {O log (
B=11=1+(B—1)N k=1

EY =
' BN (K/2+1) )
(57
and
BN K/241 i,
102 > > max{() 1og(¢’(l k))}
B B=11=1+(B—1)N k=1 @i (l,k)

BN (K/2+1)

(58)
Note that, typically, large underestimation errors in the source
PSDs and large overestimation errors in the noise PSDs
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can cause large target source distortions when applying the
estimates in a noise reduction framework. Also, large under-
estimation errors in the noise PSD are likely to cause musical
noise [28]. We therefore also quantify the performance in
terms of predicted quality and intelligibility when used in
combination with a noise reduction algorithm, as explained
below.

2) Predicted Quality and intelligibility: We can construct
the following multi-channel Wiener filter (MWF) [32] based
on the estimated parameters to extract the target signal,

s (1) Warvpr (1)
¢s (1) + Warvpr (D) R (D)Warvpr (1)

where wyvpr(!) is the minimum variance distortionless
response (MVDR) beamformer [33]

R, (ha()
a(l)"Ran(Da()

W (l) = ;o (39

wamvpr(l) = , (60)

and

Run(l) = 6, ()T + 6o ()

and where w(l) is used as §(I) = w(I)" y(l). After estimating
5 (1), the time domain signal is reconstructed by calculating the
IFFT followed by an overlap-add procedure. Note that for the
JMLE method, R.,,,,(I) = ¢, (I)T due to its noiseless signal
model.

After applying the MWEF filter to the noisy signal, we obtain
the estimated target signal and evaluate the noise reduction
performance using the segmental signal-to-noise-ratio (SSNR)
[34], the speech intelligibility performance using the speech
intelligibility in bits (SIIB) measure [35], [36] and the speech
quality performance using the perceptual evaluation of speech
quality (PESQ) measure [37].

3) Computation time: The last evaluation metric is the com-
putational time comparison between our proposed methods
and the reference methods.

(61)

Figure 4: Geometric setup for the real RIRs.

C. Experiment 1

1) Setup: We use speech signals originating from the
TIMIT database [38] and recorded RIRs to simulate realis-
tic acoustic scenarios. The RIRs are downloaded from the
database in [39], which were recorded in a room with size 6 x
6 x 2.4 m. The geometric setup for the recording is shown in
Fig. 4. The sound source was placed 2 m away from the center
of the uniform linear microphone array at 0°. This array has
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8 microphones and 8 cm inter-distances. At each microphone,
we synthesize the reverberant signal by convolving the speech
source (with a duration of 35 s) with the corresponding RIR.
Subsequently, we add noise components to the reverberant
signals simulating the microphone noise at specified signal-
to-noise ratios (SNRs) to synthesize the microphone signals.
In the following, we will consider white Gaussian noise to
simulate microphone selfnoise with variance o2 calculated
from given SNR values for each microphone. Since the signal
is non-stationary, we calculate the SNR by averaging the target
signal-to-noise ratio over the whole time duration.
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(a) RTF estimation error.
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Figure 5: Performance vs the number of time frames. In Figs b,
c and d, the gray bars indicate the underestimation errors, the
colored bars indicate overestimation errors and the methods
from left to right are SCFA, JALS, JMLE(in Figs b and c),
ALS and MALS.

In this experiment, we used the following parameters set-
ting: The sampling rate is f; = 16 kHz. The sampled noisy
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microphone signals are processed by the STFT for each sub-
time frame. As analysis and synthesis window we use the
square-root Hann window with a length of 32 ms with 50%
overlap between adjacent sub-time frames. Note that each time
frame consists of Ty = 40 overlapping sub-time frames and
has a duration of 0.64 s. The FFT length is 512. The speed
of sound is set to 344 m/s. Note that the first 512 samples of
the RIRs are used to calculate the true RTFs as these parts
of the RIRs fall within each current sub-time frame and the
remaining parts are considered as the late reverberation. Note
that for ALS-based methods, we use the same random vector
as an initial estimate of the RTF for the first time frame in a
time segment (ALS and MALS) or for a time segment (JALS).

2) Results: In Fig. 5, we compare our proposed methods
with all the other reference methods as a function of the
number of time frames in a time segment varying from 1
to 8. The reverberation time is 0.61 s and the SNR is fixed
at 0 dB. To evaluate how the robust constraints of the PSDs
proposed in Section III-D help the estimation of the parameters
of interest, we also included the modified ALS method without
using the robust constraints in Section III-D but using Egs. (19)
and (20), referred to as MALS,,. When using only a single time
frame in each time segment, the RTF estimation errors for the
ALS-based methods and the SCFA method have similar values
which are much lower than the JMLE method as shown in
Fig. 5a. The reason is that JMLE was derived from a noiseless
signal model [40]. The signal model mismatch error is thus
large for the JMLE in a O dB environment. When increasing
the number of time frames in each time segment, the RTF
estimation errors for ALS, MALS, and MALS (the three
ALS-based methods using a single time frame) do not vary
much; while the RTF estimation errors for JALS, JMLE and
SCFA (methods using multiple time frames) become much
lower. The RTF estimation errors E, for methods using a
single time frame fluctuate slightly because the first time
frame of a time segment use random initial estimate of the
RTF. The other time frames use the estimate in the previous
time frame as the initial estimate. F, for ALS and MALS,,
are close to MALS due to the normalization process in the
Hermitian angle metric in Eq. (55). The drawback of the
Hermitian angle metric is that any scaled estimate will have
the same value. The bad scaling of ALS can be reflected
in the target source PSD estimation errors, where ALS has
much larger errors compared to the other methods as shown
in Fig. 5b. In Figs. 5c and 5d, we can see that MALS,
has similar performance with ALS, which both use the PSDs
constraints in Egs. (19) and (20). While, MALS using the
robust constraints of the PSDs proposed in Section II-D
has much lower errors compared to ALS and MALS,. As
expected, the PSDs estimation errors do not change much as
a function of the number of frames in a segment since the
PSDs are time frame variant parameters. In Figs. 5b to 5d,
we show the underestimation error and overestimation error
for the PSDs. Our proposed methods (MALS and JALS)
have improved performance compared to ALS and similar
performance compared to SCFA. As shown, ALS has the worst
underestimation errors for all the PSDs. This is due to the
lack of a normalization step and using the value € to replace
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negative values in the ALS method. JMLE has the largest
overestimation errors for PSDs of the late reverberation. This is
due to the noiseless signal model that is assumed with JMLE.
In a low SNR environment, the JMLE method considers the
ambient noise as late reverberation and gives larger values
when estimating the PSDs of the late reverberation. For noise
reduction performance evaluated by SSNR in Fig. Se, our
proposed JALS has the best performance, which is slightly
better than SCFA but much better than the other methods. For
the speech intelligibility performance evaluated by SIIB and
the speech quality performance evaluated by PESQ in Figs. 5f
and 5g, the proposed JALS, MALS and the reference method
SCFA outperform the other methods.
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Figure 6: Performance vs SNR. In Figs b, ¢ and d, the gray
bars indicate the underestimation errors and the colored bars
indicate overestimation errors.

In Fig. 6, we compare all the methods while changing
the variance of the ambient noise component such that the
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SNR increases from 0 dB to 40 dB. The reverberation time
is 0.36 s and each time segment contains 8 time frames. As
shown in Fig. 6a, the RTF estimation errors become lower
for all methods when the SNR becomes larger. SCFA and
our proposed method JALS have the best overall performance,
which is much better than methods using a single time frame
(ALS and MALS). For low SNR, JMLE is worse than JALS,
but when increasing the SNR, JMLE improves the fastest as
its model mismatch error is smaller and has a smaller RTF
estimation error than JALS for 40 dB SNR. We can see
that when the signal model mismatch error is neglectable,
the MLE-based methods (SCFA and JMLE) perform better
than the ALS-based methods (JALS). For the PSDs estimation
errors in Figs. 6b to 6d, SCFA has the best performance
with only JMLE reaching a similar performance for high
SNR scenarios. Our proposed ALS-based methods (MALS and
JALS) perform much better than ALS. For noise reduction and
speech intelligibility performance in Figs. 6e to 6g, MALS and
JALS have similar performance with SCFA and much better
performance than ALS. When increasing the SNR, JMLE
has the most significant improvement and gets close to the
performance of MALS, JALS and SCFA for 40 dB SNR.

TABLE I: Computation time comparison.

ALS | MALS
6.27 5.7

JMLE | JALS
1.66 1

SCFA
154.65

method
Normalized run time

We also evaluate the computation time for all methods
and average these over all cases shown in Fig. 6. Then, we
averaged and normalized the run time for all methods with
respect to the run time for JALS as shown in Table I. We
sort the run time for all the methods in descending order from
left to right. As expected, SCFA is the most time-consuming
method. JALS and JMLE are the two fastest methods. The
computational cost mainly comes from the inversion of a
3 x 3 matrix (complexity of order 3%) and the eigenvalue
decomposition of an M x M matrix (complexity of order
M?3) for the ALS-based methods (ALS, MALS and JALS).
For the case that each time segment has N time frames, ALS
and MALS process each time frame separately and execute [
iterations IV times. Hence, they have a complexity of order
I x N x (33 + M 3). For JALS, we only need to calculate
the eigenvalue decomposition I times. Hence, its complexity
order is I x M3 + I x N x 3%. The complexity order of
JMLE is (N + I) x M3 [40]. In this experiment, we have
M =8, N = 8 and I = 10. Therefore, the time cost ratio
among ALS/MALS, JMLE and JALS is I x N X (33 + MS) :
(N+1I)x M3 : T xM3+1xNx33~592:1.27:1,
which is approximately similar to the real averaged run time
ratio in Table I.

D. Experiment 2

1) Setup: In this experiment, we generate the RIRs using
the image source method [41]. The dimension of the room is
7 x5 x4 m. In this simulated room, we have a single speaker,
four microphones and a recorded wash machine noise from
the ESC-50 database [42] as shown in Figure 7. Note that we
also added a white Gaussian noise to each microphone signal
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Figure 7: Top view of the acoustic scene with a zoom-in of
microphones.

to simulate the microphone selfnoise at a SNR of 50 dB. The
other settings are the same as those of Experiment 1. For ALS-
based methods, we assume an ideal voice activity detector is
used and the spatial coherence matrix of the ambient noise is
calculated using the noise only time frame with the following
equation

T,
21 Yi (tna k) Yj (tna k)*
T (k) = —— s = , (62)
(2 ) (2 stenn )

with |z| the absolute value of z and {4, j} the microphone

indices. For SCFA, the spatial coherence matrix of the ambient
noise is modeled as the identity matrix in [11]. For JMLE, the
ambient noise is not considered. Hence, these two methods
will have sever model mismatch errors in this experiment.
Note that SCFA can be extended to handle spatial coherence
matrices different from the identity matrix. However, it takes
some effort to calculate the gradient and the Hessian matrix
of the cost function and will not be addressed in this work.

2) Results: In Figure 8, we compare all the methods while
changing the reverberation time 7§ of the RIRs from 0.2 s to
1 s. Each time segment contains 8 time frames. We can see that
our proposed JALS method has the best performance in all the
metrics evaluated. For the RTF estimation error in Figure 8a,
the ALS-based methods ALS, MALS and JALS have degraded
performance as Ty increases. However, SCFA and JMLE have
improved performance. This is due to the model mismatch
caused by the ambient noise component. When increasing
Tso, the ratio between the correctly modeled late reverberation
component and the incorrectly modeled ambient noise com-
ponent becomes larger. For the PSDs estimation errors of the
target source and the late reverberation in Figures 8b and 8c,
SCFA and JMLE have large over estimation errors due to
considering the ambient noise as the target source and the late
reverberation. The ALS method still has the worst performance
in Figures 8b and 8c. While, for the noise PSD estimation
error in Figure 8d, SCFA has the worst performance due to
erroneous spatial coherence matrix used. In Figures 8e to 8g,
our proposed multiple time frames method JALS has improved
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Figure 8: Performance vs Tgo. In Figs b, ¢ and d, the gray
bars indicate the underestimation errors and the colored bars
indicate overestimation errors.

performance over our single time frame method MALS, which
both outperform all the other reference methods.

V. CONCLUDING REMARKS

We proposed alternating least square (ALS) based methods
to estimate the RTFs, the PSDs of the source, the PSDs of
the late reverberation, and the PSDs of the ambient noise
jointly for a single reverberant and noisy scenario. We first
modified an existing ALS method to obtain more accurate
estimates using a single time frame. Then, we extend the
method to use multiple time frames that share the same RTF
jointly. Furthermore, we imposed more robust constraints on
the estimated PSDs. Experimental results demonstrated that
the proposed methods achieve similar performance compared
to the SCFA method in terms of estimation accuracy, noise
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reduction performance, speech quality, and speech intelligibil-  where qgg‘i“ (1) is calculated by

ity. The proposed methods outperform the existing ALS-based
method and the JMLE method assuming a noiseless signal
model, especially in low SNR scenarios.

Further studies can be conducted to extend the proposed
methods to handle more complicated scenarios, such as multi-

source signals. 1

APPENDIX A
SOLUTION TO EQ. (38)
We define P, (1) = Py (1) — ¢, (1) T — ¢, (I) ¥ and refor-
mulate Eq. (38) as
BN

[2]

R s 2 3]
arg min > ’Px (1) =5 (1) ééHH
& I=1+(f-1)N F 4]
BN R 2 2
—argmin > [(¢> ) aHa) — 26, ()al Py (1) a
a  I=1+(B—1)N

s [5]
arg min —2af

a I=14+(B—1)N
A (6]
= argmaxa’l ds (DPx (D) | a
a I=14+(f-1)N
(63)
where we have used the fact that aff ;351\/: 1. The solution for (7]
a is the principal eigenvector of > bs (1) Py (1).
I=1+(B—1)N

8
APPENDIX B 18]

DECISION FLOW FOR UPDATING C', Cs, qis AND (137
We first update Cy (1) and Cs (1) by

i _q), o0 b g ) 10
(1= mln{01 (i-1), %(l)} ifgs (1) > 0,0, (1) >0 7 [10]
Ci(1-1) else.
(64) y
and (1]
: _ b (LK) o3 -
s (1)= min {Cg (-1, Sy } ifp, (1) > 0,9, (1) >0 -
Cy(1-1) else.
A (65)
With C (1) and Cs (1), we update ¢, (I) by [13]
A 0. (1) it6, (1) > 0
0. (=1 CL(dy (1) iy () >0,6,(1)<0 (60
o, (1) oy () <0.6,()<0
where (ZS (1) is calculated by [15]
M—1
Amin » _ f)
¢S — min y:n,'m,z f’?n#»l,'rr;»l , (67) [16]
CN’/m - aferl
" m=1 [17]
where we used the fact that Py, bslam|® + by +
(b’U for m = 17 ) M and P}'m,,m, - Py7rL+1,'rn+1 =
bs (|dm|2 - |dm+1|2). Then, we update ¢-, (1) by (18]
) by 1) ifg., (1) >0 [19]
oy (D)= C2 ()6, (1) ifds (1) > 0,0, () <0 (©8)
oy () ifes (1) <0,0, (1) <0
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a . . N ~min . 2 . M
gmin —min [Py, — g, am‘ — O (69)
m=1
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